Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J R Soc Interface ; 14(126)2017 01.
Article in English | MEDLINE | ID: mdl-28123097

ABSTRACT

The containment of genetically modified (GM) pollen is an issue of significant concern for many countries. For crops that are bee-pollinated, model predictions of outcrossing rates depend on the movement hypothesis used for the pollinators. Previous work studying pollen spread by honeybees, the most important pollinator worldwide, was based on the assumption that honeybee movement can be well approximated by Brownian motion. A number of recent studies, however, suggest that pollinating insects such as bees perform Lévy flights in their search for food. Such flight patterns yield much larger rates of spread, and so the Brownian motion assumption might significantly underestimate the risk associated with GM pollen outcrossing in conventional crops. In this work, we propose a mechanistic model for pollen dispersal in which the bees perform truncated Lévy flights. This assumption leads to a fractional-order diffusion model for pollen that can be tuned to model motion ranging from pure Brownian to pure Lévy. We parametrize our new model by taking the same pollen dispersal dataset used in Brownian motion modelling studies. By numerically solving the model equations, we show that the isolation distances required to keep outcrossing levels below a certain threshold are substantially increased by comparison with the original predictions, suggesting that isolation distances may need to be much larger than originally thought.


Subject(s)
Bees/physiology , Models, Biological , Plants, Genetically Modified/physiology , Pollen/physiology , Pollination/physiology , Animals
2.
BMC Plant Biol ; 14: 62, 2014 Mar 11.
Article in English | MEDLINE | ID: mdl-24618103

ABSTRACT

BACKGROUND: Polyphenol oxidase (PPO), often encoded by a multi-gene family, causes oxidative browning, a significant problem in many food products. Low-browning potatoes were produced previously through suppression of PPO gene expression, but the contribution of individual PPO gene isoform to the oxidative browning process was unknown. Here we investigated the contributions of different PPO genes to total PPO protein activity, and the correlations between PPO protein level, PPO activity and tuber tissue browning potential by suppression of all previously characterized potato PPO genes, both individually and in combination using artificial microRNAs (amiRNAs) technology. RESULTS: Survey of the potato genome database revealed 9 PPO-like gene models, named StuPPO1 to StuPPO9 in this report. StuPPO1, StuPPO2, StuPPO3 and StuPPO4 are allelic to the characterized POTP1/P2, POT32, POT33 and POT72, respectively. Fewer ESTs were found to support the transcriptions of StuPPO5 to StuPPO8. StuPPO9 related ESTs were expressed at significant higher levels in pathogen-infected potato tissues. A series of browning phenotypes were obtained by suppressing StuPPO1 to StuPPO4 genes alone and in combination. Down-regulation of one or several of the PPO genes did not usually cause up-regulation of the other PPO genes in the transgenic potato tubers, but resulted in reduced PPO protein levels. The different PPO genes did not contribute equally to the total PPO protein content in the tuber tissues, with StuPPO2 accounting for ~ 55% as the major contributor, followed by StuPPO1, ~ 25-30% and StuPPO3 and StuPPO4 together with less than 15%. Strongly positive correlations between PPO protein level, PPO activity and browning potential were demonstrated in our analysis. Low PPO activity and low-browning potatoes were produced by simultaneous down-regulation of StuPPO2 to StuPPO4, but the greatest reduction occurred when StuPPO1 to StuPPO4 were all suppressed. CONCLUSION: StuPPO1 to StuPPO4 genes contributed to browning reactions in tuber tissues but their effect was not equal. Different PPO genes may be regulated independently reflecting their diversified functions. Our results show that amiRNAs can be used to suppress closely related members of highly conserved multi-gene family. This approach also suggests a new strategy for breeding low-browning crops using small DNA inserts.


Subject(s)
Catechol Oxidase/metabolism , MicroRNAs/genetics , Plant Proteins/metabolism , Solanum tuberosum/enzymology , Catechol Oxidase/genetics , Plant Proteins/genetics , Solanum tuberosum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...