Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Sci ; 10(11)2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33187287

ABSTRACT

In our pilot study, we exposed third-trimester fetuses, from week 34 of gestation onwards, twice daily to a maternal spoken nursery rhyme. Two and five weeks after birth, 34 newborns, who were either familiarized with rhyme stimulation in utero or stimulation naïve, were (re-)exposed to the familiar, as well as to a novel and unfamiliar, rhyme, both spoken with the maternal and an unfamiliar female voice. For the stimulation-naïve group, both rhymes were unfamiliar. During stimulus presentation, heart rate activity and high-density electroencephalography were collected and newborns' responses during familiar and unfamiliar stimulation were analyzed. All newborns demonstrated stronger speech-brain coupling at 1 Hz during the presentation of the maternal voice vs. the unfamiliar female voice. Rhyme familiarity originating from prenatal exposure had no effect on speech-brain coupling in experimentally stimulated newborns. Furthermore, only stimulation-naïve newborns demonstrated an increase in heart rate during the presentation of the unfamiliar female voice. The results indicate prenatal familiarization to auditory speech and point to the specific significance of the maternal voice already in two- to five-week-old newborns.

2.
Brain Sci ; 10(8)2020 Aug 02.
Article in English | MEDLINE | ID: mdl-32748860

ABSTRACT

In a pilot study, 34 fetuses were stimulated daily with a maternal spoken nursery rhyme from week 34 of gestation onward and re-exposed two and five weeks after birth to this familiar, as well as to an unfamiliar rhyme, both spoken with the maternal and an unfamiliar female voice. During auditory stimulation, newborns were continuously monitored with polysomnography using video-monitored hdEEG. Afterward, changes in sleep-wake-state proportions during familiar and unfamiliar voice stimulation were analyzed. Our preliminary results demonstrate a general calming effect of auditory stimulation exclusively in infants who were prenatally "familiarized" with a spoken nursery rhyme, as evidenced by less waking states, more time spent in quiet (deep) sleep, and lower heartrates. A stimulation naïve group, on the other hand, demonstrated no such effects. Stimulus-specific effects related to the familiarity of the prenatally replayed voice or rhyme were not evident in newborns. Together, these results suggest "fetal learning" at a basic level and point to a familiarization with auditory stimuli prior to birth, which is evident in the first weeks of life in behavioral states and heartrate physiology of the newborn.

3.
PLoS One ; 14(10): e0224521, 2019.
Article in English | MEDLINE | ID: mdl-31661522

ABSTRACT

Human newborns spend up to 18 hours sleeping. The organization of their sleep differs immensely from adult sleep, and its quick maturation and fundamental changes correspond to the rapid cortical development at this age. Manual sleep classification is specifically challenging in this population given major body movements and frequent shifts between vigilance states; in addition various staging criteria co-exist. In the present study we utilized a machine learning approach and investigated how EEG complexity and sleep stages evolve during the very first weeks of life. We analyzed 42 full-term infants which were recorded twice (at week two and five after birth) with full polysomnography. For sleep classification EEG signal complexity was estimated using multi-scale permutation entropy and fed into a machine learning classifier. Interestingly the baby's brain signal complexity (and spectral power) revealed developmental changes in sleep in the first 5 weeks of life, and were restricted to NREM ("quiet") and REM ("active sleep") states with little to no changes in state wake. Data demonstrate that our classifier performs well over chance (i.e., >33% for 3-class classification) and reaches almost human scoring accuracy (60% at week-2, 73% at week-5). Altogether, these results demonstrate that characteristics of newborn sleep develop rapidly in the first weeks of life and can be efficiently identified by means of machine learning techniques.


Subject(s)
Infant, Newborn/physiology , Sleep Stages/physiology , Sleep/physiology , Brain/physiology , Electroencephalography/methods , Female , Humans , Machine Learning , Male , Polysomnography/methods , Sleep, REM/physiology , Wakefulness/physiology
4.
Front Aging Neurosci ; 9: 290, 2017.
Article in English | MEDLINE | ID: mdl-28936173

ABSTRACT

Single photon emission computed tomography (SPECT) and Electroencephalography (EEG) have become established tools in routine diagnostics of dementia. We aimed to increase the diagnostic power by combining quantitative markers from SPECT and EEG for differential diagnosis of disorders with amnestic symptoms. We hypothesize that the combination of SPECT with measures of interaction (connectivity) in the EEG yields higher diagnostic accuracy than the single modalities. We examined 39 patients with Alzheimer's dementia (AD), 69 patients with depressive cognitive impairment (DCI), 71 patients with amnestic mild cognitive impairment (aMCI), and 41 patients with amnestic subjective cognitive complaints (aSCC). We calculated 14 measures of interaction from a standard clinical EEG-recording and derived graph-theoretic network measures. From regional brain perfusion measured by 99mTc-hexamethyl-propylene-aminoxime (HMPAO)-SPECT in 46 regions, we calculated relative cerebral perfusion in these patients. Patient groups were classified pairwise with a linear support vector machine. Classification was conducted separately for each biomarker, and then again for each EEG- biomarker combined with SPECT. Combination of SPECT with EEG-biomarkers outperformed single use of SPECT or EEG when classifying aSCC vs. AD (90%), aMCI vs. AD (70%), and AD vs. DCI (100%), while a selection of EEG measures performed best when classifying aSCC vs. aMCI (82%) and aMCI vs. DCI (90%). Only the contrast between aSCC and DCI did not result in above-chance classification accuracy (60%). In general, accuracies were higher when measures of interaction (i.e., connectivity measures) were applied directly than when graph-theoretical measures were derived. We suggest that quantitative analysis of EEG and machine-learning techniques can support differentiating AD, aMCI, aSCC, and DCC, especially when being combined with imaging methods such as SPECT. Quantitative analysis of EEG connectivity could become an integral part for early differential diagnosis of cognitive impairment.

SELECTION OF CITATIONS
SEARCH DETAIL
...