Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
J Transl Med ; 21(1): 869, 2023 11 30.
Article in English | MEDLINE | ID: mdl-38037074

ABSTRACT

BACKGROUND: Natural killer (NK) cells play an important first-line role against tumour and viral infections and are regulated by inhibitory receptor expression. Among these inhibitory receptors, the expression, function, and mechanism of cluster of differentiation 47 (CD47) on NK cells during human immunodeficiency virus (HIV) infection remain unclear. METHODS: Fresh peripheral blood mononuclear cells (PBMCs) were collected from people living with HIV (PLWH) and HIV negative controls (NC) subjects. Soluble ligand expression levels of CD47 were measured using ELISA. HIV viral proteins or Toll-like receptor 7/8 (TLR7/8) agonist was used to investigate the mechanisms underlying the upregulation of CD47 expression. The effect of CD47 on NK cell activation, proliferation, and function were evaluated by flow cytometry. RNA-seq was used to identify downstream pathways for CD47 and its ligand interactions. A small molecule inhibitor was used to restore the inhibition of NK cell function by CD47 signalling. RESULTS: CD47 expression was highly upregulated on the NK cells from PLWH, which could be due to activation of the Toll-like receptor 7/8 (TLR7/8) pathway. Compared with NC subjects, PLWH subjects exhibited elevated levels of CD47 ligands, thrombospondin-1 (TSP1), and counter ligand signal regulatory protein-α (SIRPα). The TSP1-CD47 axis drives the suppression of interferon gamma (IFN-γ) production and the activation of the Janus kinase signal transducer and activator of transcription (JAK-STAT) pathway in NK cells. After treatment with a STAT3 inhibitor, the NK cells from PLWH showed significantly improved IFN-γ production. CONCLUSIONS: The current data indicate that the binding of the inhibitory receptor CD47 to plasma TSP1 suppresses NK cell IFN-γ production by activating the JAK/STAT3 pathway during HIV infection. Our results suggest that CD47 and its related signalling pathways could be targets for improving NK cell function in people living with HIV.


Subject(s)
HIV Infections , Toll-Like Receptor 7 , Humans , CD47 Antigen , Janus Kinases/metabolism , Killer Cells, Natural/metabolism , Leukocytes, Mononuclear/metabolism , Ligands , STAT3 Transcription Factor/metabolism , Interferon-gamma/metabolism
2.
Food Chem X ; 19: 100776, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37780238

ABSTRACT

This study aimed to extract tiger nut polysaccharides (TNPs) by the cellulase method which were graded using the DEAE-cellulose ion exchange method to obtain neutral (TNP-N) and acidic (TNP-A) polysaccharide classes. Analysis of the physical structures and monosaccharide compositions of TNP-A (3.458 KDa) and TNP-N (10.640 KDa) revealed lamellar and dense flocculent structures, with both primarily containing the monosaccharides glucose, galactose, and arabinose (Glc, Gal, and Ara). Single-factor and orthogonal tests were used to select three hydrocolloids, and the optimal ratio of the composite hydrocolloids was determined. Peanut protein drinks with a centrifugal sedimentation rate of 9.71% and a stability factor of 69.28% were obtained by adding 2.78% polysaccharide extract, 0.1% monoglyceride, and peanut pulp at a ratio of 1:15.5 g/mL. Polysaccharide protein drinks are more stable than commercially available protein drinks, with nutritional parameters either comparable to or better than those of the non-polysaccharide protein drinks.

3.
iScience ; 26(7): 107057, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37534158

ABSTRACT

Bipolar disorder (BD) is a common mental disorder characterized by manic and depressive episodes. Mood disorders have been associated with immune dysfunction. The combination of quetiapine and valproate has shown positive effects in treating BD, but the impact on immune dynamics remains less understood. Using single-cell RNA sequencing, we observed that B cells exhibited downregulation of inflammation-related genes, while pro-inflammatory mast and eosinophil cells decreased following treatment. Ribosomal peptide production genes were found to be reduced in both B and T cells after treatment. Additionally, our findings suggest that the combined therapy effectively alleviates inflammation by reducing myloid-mediated immune signaling pathways. This study provides valuable insights into the immune atlas and uncovers a potential mechanism for immune disorder alleviation in patients with BD treated with quetiapine and valproate.

4.
Eur J Med Res ; 28(1): 239, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37461056

ABSTRACT

BACKGROUND: Human papillomavirus (HPV) has been proposed as a potential pathogenetic organism involved in prostate cancer (PCa), but the association between HPV infection and relevant genomic changes in PCa is poorly understood. METHODS: To evaluate the relationship between HPV genotypes and genomic alterations in PCa, HPV capture sequencing of DNA isolated from 59 Han Chinese PCa patients was performed using an Illumina HiSeq2500. Additionally, whole-exome sequencing of DNA from these 59 PCa tissue samples and matched normal tissues was carried out using the BGI DNBSEQ platform. HPV infection status and genotyping were determined, and the genetic disparities between HPV-positive and HPV-negative PCa were evaluated. RESULTS: The presence of the high-risk HPV genome was identified in 16.9% of our cohort, and HPV16 was the most frequent genotype detected. The overall mutational burden in HPV-positive and HPV-negative PCa was similar, with an average of 2.68/Mb versus 2.58/Mb, respectively, in the targeted whole-exome region. HPV-negative tumors showed a mutational spectrum concordant with published PCa analyses with enrichment for mutations in SPOP, FOXA1, and MED12. HPV-positive tumors showed more mutations in KMT2C, KMT2D and ERCC2. Copy number alterations per sample were comparable between the two groups. However, the significantly amplified or deleted regions of the two groups only partially overlapped. We identified amplifications in oncogenes, including FCGR2B and CCND1, and deletions of tumor suppressors, such as CCNC and RB1, only in HPV-negative tumors. HPV-positive tumors showed unique deletions of tumor suppressors such as NTRK1 and JAK1. CONCLUSIONS: The genomic mutational landscape of PCa differs based on HPV infection status. This work adds evidence for the direct involvement of HPV in PCa etiology. Different genomic features render HPV-positive PCa a unique subpopulation that might benefit from virus-targeted therapy.


Subject(s)
Papillomavirus Infections , Prostatic Neoplasms , Male , Humans , Papillomavirus Infections/complications , Papillomavirus Infections/genetics , East Asian People , Prostatic Neoplasms/genetics , Prostatic Neoplasms/complications , Prostatic Neoplasms/pathology , Genomics , Genotype , Xeroderma Pigmentosum Group D Protein/genetics , Nuclear Proteins/genetics , Repressor Proteins/genetics
5.
Virology ; 584: 53-57, 2023 07.
Article in English | MEDLINE | ID: mdl-37244055

ABSTRACT

Human papillomavirus (HPV) has been recognized as an important risk factor in penile cancer. This study aimed to investigate the HPV subtypes and integration status in Chinese patients. Samples were collected from 103 penile cancer patients aged 24-90 years between 2013 and 2019. We found that HPV infection rate was 72.8%, with 28.0% integration. The aging patients were more susceptible to HPV (p = 0.009). HPV16 was the most frequent subtype observed (52/75) and exhibited the highest frequency of integration events, with 11 out of 30 single infection cases showing integration positive. The HPV integrations sites in the viral genome were not randomly distributed, the breakpoints were enriched in the E1 gene (p = 0.006) but relatively scarce in L1, E6 and E7. Our research might provide some clues how HPV leads to the progression of penile cancer.


Subject(s)
Human Papillomavirus Viruses , Oncogene Proteins, Viral , Papillomavirus Infections , Penile Neoplasms , Humans , Male , Cross-Sectional Studies , East Asian People , Genotype , Human Papillomavirus Viruses/genetics , Oncogene Proteins, Viral/genetics , Papillomavirus Infections/complications , Papillomavirus Infections/epidemiology , Penile Neoplasms/epidemiology , Penile Neoplasms/virology , Adult , Middle Aged , Aged , Aged, 80 and over
6.
Cell Rep Methods ; 3(4): 100444, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37159673

ABSTRACT

CRISPR-associated (Cas) nucleases are multifunctional tools for gene editing. Cas12a possesses several advantages, including the requirement of a single guide RNA and high fidelity of gene editing. Here, we tested three Cas12a orthologs from human gut samples and identified a LtCas12a that utilizes a TTNA protospacer adjacent motif (PAM) distinct from the canonical TTTV PAM but with equivalent cleavage ability and specificity. These features significantly broadened the targeting scope of Cas12a family. Furthermore, we developed a sensitive, accurate, and rapid human papillomavirus (HPV) 16/18 gene detection platform based on LtCas12a DNA endonuclease-targeted CRISPR trans reporter (DETECTR) and lateral flow assay (LFA). LtCas12a showed comparable sensitivity to quantitative polymerase chain reaction (qPCR) and no cross-reaction with 13 other high-risk HPV genotypes in detecting the HPV16/18 L1 gene. Taken together, LtCas12a can broaden the applications of the CRISPR-Cas12a family and serve as a promising next-generation tool for therapeutic application and molecular diagnosis.


Subject(s)
CRISPR-Cas Systems , Papillomavirus Infections , Humans , CRISPR-Cas Systems/genetics , Human papillomavirus 16/genetics , Human papillomavirus 18/genetics , Papillomavirus Infections/diagnosis , Biological Assay , Capsid Proteins , Papillomaviridae
7.
Nucleic Acids Res ; 51(9): 4237-4251, 2023 05 22.
Article in English | MEDLINE | ID: mdl-36864748

ABSTRACT

Human papillomavirus (HPV) integration is a critical step in cervical cancer development; however, the oncogenic mechanism at the genome-wide transcriptional level is still poorly understood. In this study, we employed integrative analysis on multi-omics data of six HPV-positive and three HPV-negative cell lines. Through HPV integration detection, super-enhancer (SE) identification, SE-associated gene expression and extrachromosomal DNA (ecDNA) investigation, we aimed to explore the genome-wide transcriptional influence of HPV integration. We identified seven high-ranking cellular SEs generated by HPV integration in total (the HPV breakpoint-induced cellular SEs, BP-cSEs), leading to intra-chromosomal and inter-chromosomal regulation of chromosomal genes. The pathway analysis revealed that the dysregulated chromosomal genes were correlated to cancer-related pathways. Importantly, we demonstrated that BP-cSEs existed in the HPV-human hybrid ecDNAs, explaining the above transcriptional alterations. Our results suggest that HPV integration generates cellular SEs that function as ecDNA to regulate unconstrained transcription, expanding the tumorigenic mechanism of HPV integration and providing insights for developing new diagnostic and therapeutic strategies.


Subject(s)
DNA , Enhancer Elements, Genetic , Genome, Human , Human Papillomavirus Viruses , Papillomavirus Infections , Transcription, Genetic , Uterine Cervical Neoplasms , Virus Integration , Female , Humans , Human Papillomavirus Viruses/genetics , Papillomavirus Infections/genetics , Papillomavirus Infections/virology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/virology , Virus Integration/genetics , Enhancer Elements, Genetic/genetics , DNA/genetics , DNA/metabolism , Genome, Human/genetics , Carcinogenesis , Chromosome Breakpoints , Chromosomes, Human/genetics
10.
Nat Commun ; 13(1): 1425, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35301321

ABSTRACT

Genome editing technologies hold tremendous potential in biomedical research and drug development. Therefore, it is imperative to discover gene editing tools with superior cutting efficiency, good fidelity, and fewer genomic restrictions. Here, we report a CRISPR/Cas9 from Faecalibaculum rodentium, which is characterized by a simple PAM (5'-NNTA-3') and a guide RNA length of 21-22 bp. We find that FrCas9 could achieve comparable efficiency and specificity to SpCas9. Interestingly, the PAM of FrCas9 presents a palindromic sequence, which greatly expands its targeting scope. Due to the PAM sequence, FrCas9 possesses double editing-windows for base editor and could directly target the TATA-box in eukaryotic promoters for TATA-box related diseases. Together, our results broaden the understanding of CRISPR/Cas-mediated genome engineering and establish FrCas9 as a safe and efficient platform for wide applications in research, biotechnology and therapeutics.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Cas Systems , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Gene Editing/methods , Genome , RNA, Guide, Kinetoplastida/genetics
11.
Cancer Gene Ther ; 29(6): 758-769, 2022 06.
Article in English | MEDLINE | ID: mdl-34112918

ABSTRACT

Genome editing tools targeting high-risk human papillomavirus (HPV) oncogene could be a promising therapeutic strategy for the treatment of HPV-related cervical cancer. We aimed to improve the editing efficiency and detect off-target effects concurrently for the clinical translation strategy by using CRISPR-Cas9 system co-transfected with 34nt non-homologous double-stranded oligodeoxynucleotide (dsODN). We firstly tested this strategy on targeting the Green Fluorescent Protein (GFP) gene, of which the expression is easily observed. Our results showed that the GFP+ cells were significantly decreased when using GFP-sgRNAs with dsODN, compared to using GFP-sgRNAs without donors. By PCR and Sanger sequencing, we verified the dsODN integration into the break sites of the GFP gene. And by amplicon sequencing, we observed that the indels% of the targeted site on the GFP gene was increased by using GFP-sgRNAs with dsODN. Next, we went on to target the HPV18 E7 oncogene by using single E7-sgRNA and multiplexed E7-sgRNAs respectively. Whenever using single sgRNA or multiplexed sgRNAs, the mRNA expression of HPV18 E7 oncogene was significantly decreased when adding E7-sgRNAs with dsODN, compared to E7-sgRNAs without donor. And the indels% of the targeted sites on the HPV18 E7 gene was markedly increased by adding dsODN with E7-sgRNAs. Finally, we performed GUIDE-Seq to verify that the integrated dsODN could serve as the marker to detect off-target effects in using single or multiplexed two sgRNAs. And we detected fewer on-target reads and off-target sites in multiplexes compared to the single sgRNAs when targeting the GFP and the HPV18 E7 genes. Together, CRISPR-Cas9 system co-transfected with 34nt dsODN concurrently improved the editing efficiency and monitored off-target effects, which might provide new insights in the treatment of HPV infections and related cervical cancer.


Subject(s)
Papillomavirus Infections , Uterine Cervical Neoplasms , CRISPR-Cas Systems/genetics , Female , Humans , Mutagens , Oligodeoxyribonucleotides , Oncogenes , Papillomavirus Infections/genetics , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/therapy
12.
Mol Ther Nucleic Acids ; 26: 1466-1478, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34938601

ABSTRACT

Zinc-finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs), and CRISPR-associated Cas9 endonucleases are three major generations of genome editing tools. However, no parallel comparison about the efficiencies and off-target activity of the three nucleases has been reported, which is critical for the final clinical decision. We for the first time developed the genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) method in ZFNs and TALENs with novel bioinformatics algorithms to evaluate the off-targets. By targeting human papillomavirus 16 (HPV16), we compared the performance of ZFNs, TALENs, and SpCas9 in vivo. Our data showed that ZFNs with similar targets could generate distinct massive off-targets (287-1,856), and the specificity could be reversely correlated with the counts of middle "G" in zinc finger proteins (ZFPs). We also compared the TALENs with different N-terminal domains (wild-type [WT]/αN/ßN) and G recognition modules (NN/NH) and found the design (αN or NN) to improve the efficiency of TALEN inevitably increased off-targets. Finally, our results showed that SpCas9 was more efficient and specific than ZFNs and TALENs. Specifically, SpCas9 had fewer off-target counts in URR (SpCas9, n = 0; TALEN, n = 1; ZFN, n = 287), E6 (SpCas9, n = 0; TALEN, n = 7), and E7 (SpCas9, n = 4; TALEN, n = 36). Taken together, we suggest that for HPV gene therapies, SpCas9 is a more efficient and safer genome editing tool. Our off-target data could be used to improve the design of ZFNs and TALENs, and the universal in vivo off-target detection pipeline for three generations of artificial nucleases provided useful tools for genome engineering-based gene therapy.

13.
Microbiol Spectr ; 9(2): e0135221, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34643438

ABSTRACT

The emerging new lineages of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have marked a new phase of coronavirus disease 2019 (COVID-19). Understanding the recognition mechanisms of potent neutralizing monoclonal antibodies (NAbs) against the spike protein is pivotal for developing new vaccines and antibody drugs. Here, we isolated several monoclonal antibodies (MAbs) against the SARS-CoV-2 spike protein receptor-binding domain (S-RBD) from the B cell receptor repertoires of a SARS-CoV-2 convalescent. Among these MAbs, the antibody nCoV617 demonstrates the most potent neutralizing activity against authentic SARS-CoV-2 infection, as well as prophylactic and therapeutic efficacies against the human angiotensin-converting enzyme 2 (ACE2) transgenic mouse model in vivo. The crystal structure of S-RBD in complex with nCoV617 reveals that nCoV617 mainly binds to the back of the "ridge" of RBD and shares limited binding residues with ACE2. Under the background of the S-trimer model, it potentially binds to both "up" and "down" conformations of S-RBD. In vitro mutagenesis assays show that mutant residues found in the emerging new lineage B.1.1.7 of SARS-CoV-2 do not affect nCoV617 binding to the S-RBD. These results provide a new human-sourced neutralizing antibody against the S-RBD and assist vaccine development. IMPORTANCE COVID-19 is a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The COVID-19 pandemic has posed a serious threat to global health and the economy, so it is necessary to find safe and effective antibody drugs and treatments. The receptor-binding domain (RBD) in the SARS-CoV-2 spike protein is responsible for binding to the angiotensin-converting enzyme 2 (ACE2) receptor. It contains a variety of dominant neutralizing epitopes and is an important antigen for the development of new coronavirus antibodies. The significance of our research lies in the determination of new epitopes, the discovery of antibodies against RBD, and the evaluation of the antibodies' neutralizing effect. The identified antibodies here may be drug candidates for the development of clinical interventions for SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/therapy , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Binding Sites/immunology , COVID-19 Vaccines/immunology , Crystallography, X-Ray , Disease Models, Animal , Female , Humans , Immunization, Passive/methods , Immunoglobulin G/blood , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein Interaction Domains and Motifs/immunology , Viral Load/drug effects , COVID-19 Serotherapy
14.
Front Immunol ; 12: 656663, 2021.
Article in English | MEDLINE | ID: mdl-34447368

ABSTRACT

A major barrier to HIV eradication is the persistence of viral reservoirs. Resting CD4+ T cells are thought to be one of the major viral reservoirs, However, the underlying mechanism regulating HIV infection and the establishment of viral reservoir in T cells remain poorly understood. We have investigated the role of IP-10 in the establishment of HIV reservoirs in CD4+ T cells, and found that in HIV-infected individuals, plasma IP-10 was elevated, and positively correlated with HIV viral load and viral reservoir size. In addition, we found that binding of IP-10 to CXCR3 enhanced HIV latent infection of resting CD4+ T cells in vitro. Mechanistically, IP-10 stimulation promoted cofilin activity and actin dynamics, facilitating HIV entry and DNA integration. Moreover, treatment of resting CD4+ T cells with a LIM kinase inhibitor R10015 blocked cofilin phosphorylation and abrogated IP-10-mediated enhancement of HIV latent infection. These results suggest that IP-10 is a critical factor involved in HIV latent infection, and that therapeutic targeting of IP-10 may be a potential strategy for inhibiting HIV latent infection.


Subject(s)
Actin Depolymerizing Factors/metabolism , CD4-Positive T-Lymphocytes/virology , Chemokine CXCL10/pharmacology , HIV Infections/metabolism , HIV Infections/virology , HIV-1/physiology , Lim Kinases/metabolism , Virus Latency/drug effects , Adult , Biomarkers , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Female , HIV Infections/immunology , HIV-1/classification , HIV-1/genetics , Host-Pathogen Interactions/immunology , Humans , Immunologic Memory , Immunophenotyping , Male , Middle Aged , Proviruses/genetics , Signal Transduction , Viral Load , Virus Replication , Young Adult
15.
Bioinformatics ; 37(20): 3405-3411, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34009299

ABSTRACT

MOTIVATION: Epstein-Barr virus (EBV) is one of the most prevalent DNA oncogenic viruses. The integration of EBV into the host genome has been reported to play an important role in cancer development. The preference of EBV integration showed strong dependence on the local genomic environment, which enables the prediction of EBV integration sites. RESULTS: An attention-based deep learning model, DeepEBV, was developed to predict EBV integration sites by learning local genomic features automatically. First, DeepEBV was trained and tested using the data from the dsVIS database. The results showed that DeepEBV with EBV integration sequences plus Repeat peaks and 2-fold data augmentation performed the best on the training dataset. Furthermore, the performance of the model was validated in an independent dataset. In addition, the motifs of DNA-binding proteins could influence the selection preference of viral insertional mutagenesis. Furthermore, the results showed that DeepEBV can predict EBV integration hotspot genes accurately. In summary, DeepEBV is a robust, accurate and explainable deep learning model, providing novel insights into EBV integration preferences and mechanisms. AVAILABILITYAND IMPLEMENTATION: DeepEBV is available as open-source software and can be downloaded from https://github.com/JiuxingLiang/DeepEBV.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

16.
BMC Immunol ; 22(1): 25, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33832435

ABSTRACT

BACKGROUND: T cell immunoglobulin and mucin domain-containing-3 (Tim-3) is a negative regulator expressed on T cells, and is also expressed on natural killer (NK) cells. The function of Tim-3 chiefly restricts IFNγ-production in T cells, however, the impact of Tim-3 on NK cell function has not been clearly elucidated. RESULTS: In this study, we demonstrated down-regulation of Tim-3 expression on NK cells while Tim-3 is upregulated on CD4+ T cells during HIV infection. Functional assays indicated that Tim-3 mediates suppression of CD107a degranulation in NK cells and CD4+ T cells, while it fails to inhibit the production of IFN-γ by NK cells. Analyses of downstream pathways using an antibody to block Tim-3 function demonstrated that Tim-3 can inhibit ERK and NFκB p65 signaling; however, it failed to suppress the NFAT pathway. Further, we found that the NFAT activity in NK cells was much higher than that in CD4+ T cells, indicating that NFAT pathway is important for promotion of IFN-γ production by NK cells. CONCLUSIONS: Thus, our data show that the expression of Tim-3 on NK cells is insufficient to inhibit IFN-γ production. Collectively, our findings demonstrate a potential mechanism of Tim-3 regulation of NK cells and a target for HIV infection immunotherapy.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HIV-1/physiology , Hepatitis A Virus Cellular Receptor 2/metabolism , Killer Cells, Natural/immunology , NFATC Transcription Factors/metabolism , Adult , Cell Degranulation , Gene Expression Regulation , Hepatitis A Virus Cellular Receptor 2/genetics , Humans , Immune Tolerance , Interferon-gamma/metabolism , Lymphocyte Activation , Male , Middle Aged , Sexual and Gender Minorities , Signal Transduction , Young Adult
17.
Aging (Albany NY) ; 12(23): 23668-23683, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33221743

ABSTRACT

The role of DNA methyltransferase 3B (DNMT3B) in tumorigenesis and development has been widely recognized; however, the mechanism underlying its action remains unclear. Considering its function in de novo methylation, we aimed to investigate whether DNMT3B plays its role via microRNA (miR)-34a promoter methylation in bladder cancer. We found that DNMT3B expression was low in 10 bladder cancer tissues and high in 20 bladder cancer tissues. miR-34a expression was higher in bladder cancer tissues with low expression of DNMT3B than that in bladder cancer tissues with high expression of DNMT3B. The level of miR-34a was negatively correlated with the level of DNMT3B. The methylation ratio of the miR-34a promoter was positively correlated with the level of DNMT3B and negatively correlated with the level of miR-34a. DNMT3B knockdown increased the expression of miR-34a and the transcriptional activity of the miR-34a promoter, while decreasing miR-34a promoter methylation. DNMT3B knockdown inhibited migration and invasion, while decreasing the protein levels of hepatocyte nuclear factor 4 gamma and Notch1 which are downstream targets of miR-34a. These inhibitory effects of DNMT3B were mitigated by the miR-34a inhibitor. In conclusion, DNMT3B silencing suppresses migration and invasion by epigenetically promoting miR-34a in bladder cancer.


Subject(s)
Cell Movement , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , Epigenesis, Genetic , Gene Silencing , MicroRNAs/metabolism , Urinary Bladder Neoplasms/enzymology , Aged , Cell Line, Tumor , DNA (Cytosine-5-)-Methyltransferases/genetics , Female , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Humans , Male , MicroRNAs/genetics , Middle Aged , Neoplasm Invasiveness , Promoter Regions, Genetic , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Signal Transduction , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , DNA Methyltransferase 3B
18.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(9): 1325-1331, 2020 Sep 30.
Article in Chinese | MEDLINE | ID: mdl-32990242

ABSTRACT

OBJECTIVE: To investigate the mechanism by which long non-coding RNA TUG1 affects bladder cancer cell migration and invasion. METHODS: The expressions of TUG1 and miR-29c-3p were examined by quantitative RT-PCR (qRT-PCR) in 10 bladder cancer tissues and 5 bladder cancer cell lines. Trans-well assay was used to detect the changes in migration and invasion abilities of bladder cancer T24 cells after TUG1 knockdown using RNA interference technique, and the alteration in the expression of CAPN7 was also detected. The expression of CAPN7 was examined in T24 cells overexpressing mir-29c-3p by Western blotting, and luciferase reporter assay was performed to confirm the targeting of miR-29c-3p to TUG1 and CAPN7. The effects of CAPN7 overexpression and sh-TUG1 on the migration and invasion of T24 cells were investigated. RESULTS: The expression of TUG1 was up-regulated and mir-29c-3p was down-regulated significantly in bladder cancer tissue with a negative correlation between their expressions. TUG1 knockdown significantly inhibited the migration and invasion of T24 cells (P < 0.01). Overexpression of mir-29c-3p in T24 cells obviously down-regulated the expression of CAPN7 protein, whose expression was positively correlated with TUG1 expression (r=0.4081, P=0.0139). The results of luciferase reporter assay confirmed both TUG1 and CAPN7 as the targets of mir-29c-3p. CAPN7 overexpression could partially reverse the tumor suppressing effect of sh-TUG1 in T24 cells. CONCLUSIONS: Mir-29c-3p targeting TUG1 affects the migration and invasion of bladder cancer cells by regulating the expression of CAPN7.


Subject(s)
MicroRNAs/genetics , Urinary Bladder Neoplasms , Calpain , Cell Line, Tumor , Cell Proliferation , Humans , RNA, Long Noncoding/genetics , Urinary Bladder Neoplasms/genetics
19.
Front Mol Biosci ; 7: 620973, 2020.
Article in English | MEDLINE | ID: mdl-33521058

ABSTRACT

Accurate regulation of cell cycle is important for normal tissue development and homeostasis. RCC2 (Regulator of Chromosome Condensation 2) play a role as chromosomal passenger complex (CPC) implicated in all cell cycle phases. RCC2 was initially identified as Ran guanine exchange factor (GEF) for small G proteins. Therefore, RCC2 plays a key role in oncogenesis of most cancers. RCC2 is implicated in Colorectal Cancer (CRC), Lung Adenocarcinoma (LUAD), breast cancer, and ovarian cancer. Expression level of RCC2 protein determines regulation of tumor cell proliferation, invasion, metastasis, and radio-chemotherapeutic resistance. In this review, we explored proteins that interact with RCC2 to modulate tumor development and cancer therapeutic resistance by regulation of cell cycle process through various signaling pathways.

20.
Mol Ther Nucleic Acids ; 16: 257-271, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-30925453

ABSTRACT

Taurine-upregulated gene 1 (TUG1) has been involved in tumorigenesis of several human cancers, but its precise biological role in bladder cancer remains largely elusive. In this study, we found that TUG1 was upregulated in bladder cancer and the expression of TUG1 was positively and negatively correlated with CCND2 and miR-194-5p, respectively. MiR-194-5p expression was frequently decreased through promoter hypermethylation, while it was epigenetically increased following cisplatin and 5-aza-2'-deoxycytidine (5-Aza-DC) treatment. Furthermore, knockdown of TUG1 attenuated the expression of epigenetic regulator Enhancer of zeste homolog 2 (EZH2), and it alleviated the promoter hypermethylation of miR-194-5p and induced its expression. Increased miR-194-5p expression or decreased TUG1 expression significantly sensitized bladder cancer cells to cisplatin, inhibited the proliferation, and induced apoptosis. Besides, CCND2 was a direct target of miR-194-5p, while miR-194-5p was regulated by TUG1. CCND2 could partially restore the tumor-suppressive effects on cell proliferation and cisplatin resistance following TUG1 silencing. Additionally, TUG1 expression was correlated with clinical stage, lymphatic metastasis, and patient prognosis. In conclusion, TUG1 promotes bladder cancer cell growth and chemoresistance by regulating CCND2 via EZH2-associated silencing of miR-194-5p. Our study may be conducive to elucidating the molecular mechanism of and providing novel therapeutic target and biomarker for bladder cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...