Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 18(5): e1010194, 2022 05.
Article in English | MEDLINE | ID: mdl-35587496

ABSTRACT

In the ciliate Tetrahymena thermophila, lysosome-related organelles called mucocysts accumulate at the cell periphery where they secrete their contents in response to extracellular events, a phenomenon called regulated exocytosis. The molecular bases underlying regulated exocytosis have been extensively described in animals but it is not clear whether similar mechanisms exist in ciliates or their sister lineage, the Apicomplexan parasites, which together belong to the ecologically and medically important superphylum Alveolata. Beginning with a T. thermophila mutant in mucocyst exocytosis, we used a forward genetic approach to uncover MDL1 (Mucocyst Discharge with a LamG domain), a novel gene that is essential for regulated exocytosis of mucocysts. Mdl1p is a 40 kDa membrane glycoprotein that localizes to mucocysts, and specifically to a tip domain that contacts the plasma membrane when the mucocyst is docked. This sub-localization of Mdl1p, which occurs prior to docking, underscores a functional asymmetry in mucocysts that is strikingly similar to that of highly polarized secretory organelles in other Alveolates. A mis-sense mutation in the LamG domain results in mucocysts that dock but only undergo inefficient exocytosis. In contrast, complete knockout of MDL1 largely prevents mucocyst docking itself. Mdl1p is physically associated with 9 other proteins, all of them novel and largely restricted to Alveolates, and sedimentation analysis supports the idea that they form a large complex. Analysis of three other members of this putative complex, called MDD (for Mucocyst Docking and Discharge), shows that they also localize to mucocysts. Negative staining of purified MDD complexes revealed distinct particles with a central channel. Our results uncover a novel macromolecular complex whose subunits are conserved within alveolates but not in other lineages, that is essential for regulated exocytosis in T. thermophila.


Subject(s)
Tetrahymena thermophila , Tetrahymena , Animals , Exocytosis/genetics , Lysosomes/metabolism , Organelles/metabolism , Secretory Vesicles/genetics , Secretory Vesicles/metabolism , Tetrahymena thermophila/genetics
2.
Biophys J ; 121(23): 4543-4559, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36815706

ABSTRACT

Asymmetric distributions of peripheral membrane proteins define cell polarity across all kingdoms of life. Non-linear positive feedback on membrane binding is essential to amplify and stabilize these asymmetries, but how specific molecular sources of non-linearity shape polarization dynamics remains poorly understood. Here we show that the ability to oligomerize, which is common to many peripheral membrane proteins, can play a profound role in shaping polarization dynamics in simple feedback circuits. We show that size-dependent binding avidity and mobility of membrane-bound oligomers endow polarity circuits with several key properties. Size-dependent membrane binding avidity confers a form of positive feedback on the accumulation of oligomer subunits. Although insufficient by itself, this sharply reduces the amount of additional feedback required for spontaneous emergence and stable maintenance of polarized states. Size-dependent oligomer mobility makes symmetry breaking and stable polarity more robust with respect to variation in subunit diffusivities and cell sizes, and slows the approach to a final stable spatial distribution, allowing cells to "remember" polarity boundaries imposed by transient external cues. Together, these findings reveal how oligomerization of peripheral membrane proteins can provide powerful and highly tunable sources of non-linear feedback in biochemical circuits that govern cell surface polarity. Given its prevalence and widespread involvement in cell polarity, we speculate that self-oligomerization may have provided an accessible path to evolving simple polarity circuits.


Subject(s)
Cell Polarity , Feedback, Physiological , Cell Membrane/metabolism , Feedback , Membrane Proteins/metabolism
3.
Genetics ; 215(2): 421-434, 2020 06.
Article in English | MEDLINE | ID: mdl-32245789

ABSTRACT

P granules are phase-separated liquid droplets that play important roles in the maintenance of germ cell fate in Caenorhabditis elegans Both the localization and formation of P granules are highly dynamic, but mechanisms that regulate such processes remain poorly understood. Here, we show evidence that the VASA-like germline RNA helicase GLH-1 couples distinct steps of its ATPase hydrolysis cycle to control the formation and disassembly of P granules. In addition, we found that the phenylalanine-glycine-glycine repeats in GLH-1 promote its localization at the perinucleus. Proteomic analyses of the GLH-1 complex with a GLH-1 mutation that interferes with P granule disassembly revealed transient interactions of GLH-1 with several Argonautes and RNA-binding proteins. Finally, we found that defects in recruiting the P granule component PRG-1 to perinuclear foci in the adult germline correlate with the fertility defects observed in various GLH-1 mutants. Together, our results highlight the versatile roles of an RNA helicase in controlling the formation of liquid droplets in space and time.


Subject(s)
Adenosine Triphosphate/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Cytoplasmic Granules/metabolism , DEAD-box RNA Helicases/metabolism , Liquid Crystals/chemistry , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/genetics , DEAD-box RNA Helicases/genetics , Hydrolysis
4.
Development ; 144(19): 3405-3416, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28974638

ABSTRACT

PAR proteins constitute a highly conserved network of scaffolding proteins, adaptors and enzymes that form and stabilize cortical asymmetries in response to diverse inputs. They function throughout development and across the metazoa to regulate cell polarity. In recent years, traditional approaches to identifying and characterizing molecular players and interactions in the PAR network have begun to merge with biophysical, theoretical and computational efforts to understand the network as a pattern-forming biochemical circuit. Here, we summarize recent progress in the field, focusing on recent studies that have characterized the core molecular circuitry, circuit design and spatiotemporal dynamics. We also consider some of the ways in which the PAR network has evolved to polarize cells in different contexts and in response to different cues and functional constraints.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/cytology , Caenorhabditis elegans/metabolism , Cell Polarity , Animals , Caenorhabditis elegans/embryology , Caenorhabditis elegans Proteins/chemistry , Protein Domains , Signal Transduction
6.
Am J Hum Genet ; 98(5): 934-955, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27153397

ABSTRACT

Haplotype-dependent allele-specific methylation (hap-ASM) can impact disease susceptibility, but maps of this phenomenon using stringent criteria in disease-relevant tissues remain sparse. Here we apply array-based and Methyl-Seq approaches to multiple human tissues and cell types, including brain, purified neurons and glia, T lymphocytes, and placenta, and identify 795 hap-ASM differentially methylated regions (DMRs) and 3,082 strong methylation quantitative trait loci (mQTLs), most not previously reported. More than half of these DMRs have cell type-restricted ASM, and among them are 188 hap-ASM DMRs and 933 mQTLs located near GWAS signals for immune and neurological disorders. Targeted bis-seq confirmed hap-ASM in 12/13 loci tested, including CCDC155, CD69, FRMD1, IRF1, KBTBD11, and S100A(∗)-ILF2, associated with immune phenotypes, MYT1L, PTPRN2, CMTM8 and CELF2, associated with neurological disorders, NGFR and HLA-DRB6, associated with both immunological and brain disorders, and ZFP57, a trans-acting regulator of genomic imprinting. Polymorphic CTCF and transcription factor (TF) binding sites were over-represented among hap-ASM DMRs and mQTLs, and analysis of the human data, supplemented by cross-species comparisons to macaques, indicated that CTCF and TF binding likelihood predicts the strength and direction of the allelic methylation asymmetry. These results show that hap-ASM is highly tissue specific; an important trans-acting regulator of genomic imprinting is regulated by this phenomenon; and variation in CTCF and TF binding sites is an underlying mechanism, and maps of hap-ASM and mQTLs reveal regulatory sequences underlying supra- and sub-threshold GWAS peaks in immunological and neurological disorders.


Subject(s)
DNA Methylation , Genomic Imprinting , Haplotypes/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci , Trans-Activators/genetics , Alleles , Animals , Brain/metabolism , Brain/pathology , Female , Genome-Wide Association Study , Humans , Immune System Diseases/genetics , Macaca mulatta , Macaca radiata , Nervous System Diseases/genetics , Placenta/metabolism , Placenta/pathology , Pregnancy , Species Specificity , T-Lymphocytes/metabolism , T-Lymphocytes/pathology
7.
Genome Biol ; 16: 263, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26607552

ABSTRACT

BACKGROUND: Trisomy 21 causes Down syndrome (DS), but the mechanisms by which the extra chromosome leads to deficient intellectual and immune function are not well understood. RESULTS: Here, we profile CpG methylation in DS and control cerebral and cerebellar cortex of adults and cerebrum of fetuses. We purify neuronal and non-neuronal nuclei and T lymphocytes and find biologically relevant genes with DS-specific methylation (DS-DM) in each of these cell types. Some genes show brain-specific DS-DM, while others show stronger DS-DM in T cells. Both 5-methyl-cytosine and 5-hydroxy-methyl-cytosine contribute to the DS-DM. Thirty percent of genes with DS-DM in adult brain cells also show DS-DM in fetal brains, indicating early onset of these epigenetic changes, and we find early maturation of methylation patterns in DS brain and lymphocytes. Some, but not all, of the DS-DM genes show differential expression. DS-DM preferentially affected CpGs in or near specific transcription factor binding sites (TFBSs), implicating a mechanism involving altered TFBS occupancy. Methyl-seq of brain DNA from mouse models with sub-chromosomal duplications mimicking DS reveals partial but significant overlaps with human DS-DM and shows that multiple chromosome 21 genes contribute to the downstream epigenetic effects. CONCLUSIONS: These data point to novel biological mechanisms in DS and have general implications for trans effects of chromosomal duplications and aneuploidies on epigenetic patterning.


Subject(s)
Aneuploidy , Brain/metabolism , DNA Methylation/genetics , Down Syndrome/genetics , Epigenesis, Genetic , Adult , Animals , Brain/growth & development , Brain/pathology , Chromosomes, Human, Pair 21/genetics , CpG Islands/genetics , Disease Models, Animal , Down Syndrome/pathology , Fetus , Humans , Mice , T-Lymphocytes/metabolism , T-Lymphocytes/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...