Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biochem ; 120(5): 8466-8474, 2019 May.
Article in English | MEDLINE | ID: mdl-30556190

ABSTRACT

MicroRNA-205 (miR-205) is involved in various physiological and pathological processes, but its biological function in follicular atresia remains unclear. In this study, we investigated miR-205 expression in mouse granulosa cells (mGCs) and analyzed its functions in primary mGCs by performing a series of in vitro experiments. Quantitative real-time polymerase chain reaction showed that miR-205 expression was significantly higher in early atretic follicles and progressively atretic follicles than in healthy follicles. miR-205 overexpression in mGCs significantly promoted apoptosis and caspase-3/9 activities, as well as inhibited estrogen (E2) release and cytochrome P450 family 19 subfamily A polypeptide 1 (CYP19A1, a key gene in E2 production) expression. Bioinformatics and luciferase reporter assays revealed that the gene encoding cyclic AMP response element (CRE)-binding protein 1 (CREB1) was a direct target of miR-205 in mGCs. CREB1 upregulation partially rescued the effects of miR-205 on apoptosis, caspase-3/9 activities, E2 production, and CYP19A1 expression on mGCs. These results indicate that miR-205 might play an important role in ovarian follicular development and provide new insights into follicular atresia.

2.
Biomed Pharmacother ; 105: 1141-1146, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30021350

ABSTRACT

Cyclic AMP response element-binding protein 1 (CREB1), a member of the CREB family, is known to be involved in follicular growth, ovulation, and ovarian disease. However, the physiological function of CREB1 in mouse granulosa cells (mGCs) remains lagerly unknown. The aim of this study was to determine the role of CREB1 in mGCs by knocking down CREB1 expression. CREB1 knock-down in mGCs at the mRNA and protein levels, was confirmed by quantitative real-time polymerase chain reaction and western blot. Results of enzyme linked immunosorbent assay revealed that CREB1 knockdown significantly decreased the concentrations of estradiol (E2) and progesterone (P4) in mGCs. Furthermore, the CREB1 knockdown in mGCs promoted cell proliferation and apoptosis, and arrested the cell cycle in S-phase. To elucidate the regulatory mechanism underlying the effects of CREB1 knockdown on steroid synthesis, cell cycle, and apoptosis, we measured the protein expression levels of several related genes in mGCs knocked down CREB1. When CREB1 was knocked down, the expression of Cyp1b1 and Cyp19a1, which encode steroidogenic enzymes, was down-regulated; the expression of the cell cycle factors CyclinA1, CyclinB1, and CyclinD2 were significantly decreased. Among apoptosis-related genes, Bcl-2 was down-regulated, whereas Bax and cleaved Caspase3 were upregulated. Moreover, CREB1 knockdown significantly decreased expression level of Has2, Ptgs2, and Igfbp4, which are essential genes for folliculogenesis in mGCs. Taken together, these findings suggested that CREB1 might be a key regulator of mGCs through regulating steroid synthesis, cell proliferation, cell cycle, apoptosis, and other regulators of folliculogenesis.


Subject(s)
Apoptosis/physiology , Cyclic AMP Response Element-Binding Protein/deficiency , Estradiol/biosynthesis , Gene Knockdown Techniques , Granulosa Cells/metabolism , Animals , Cell Proliferation/physiology , Cyclic AMP Response Element-Binding Protein/genetics , Female , Gene Knockdown Techniques/methods , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...