Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Vet Res ; 20(1): 188, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730373

ABSTRACT

Femoral fractures are often considered lethal for adult horses because femur osteosynthesis is still a surgical challenge. For equine femur osteosynthesis, primary stability is essential, but the detailed physiological forces occurring in the hindlimb are largely unknown. The objective of this study was to create a numerical testing environment to evaluate equine femur osteosynthesis based on physiological conditions. The study was designed as a finite element analysis (FEA) of the femur using a musculoskeletal model of the loading situation in stance. Relevant forces were determined in the musculoskeletal model via optimization. The treatment of four different fracture types with an intramedullary nail was investigated in FEA with loading conditions derived from the model. The analyzed diaphyseal fracture types were a transverse (TR) fracture, two oblique fractures in different orientations (OB-ML: medial-lateral and OB-AP: anterior-posterior) and a "gap" fracture (GAP) without contact between the fragments. For the native femur, the most relevant areas of increased stress were located distally to the femoral head and proximally to the caudal side of the condyles. For all fracture types, the highest stresses in the implant material were present in the fracture-adjacent screws. Maximum compressive (-348 MPa) and tensile stress (197 MPa) were found for the GAP fracture, but material strength was not exceeded. The mathematical model was able to predict a load distribution in the femur of the standing horse and was used to assess the performance of internal fixation devices via FEA. The analyzed intramedullary nail and screws showed sufficient stability for all fracture types.


Subject(s)
Femoral Fractures , Fracture Fixation, Internal , Hindlimb , Animals , Horses/physiology , Biomechanical Phenomena , Femoral Fractures/veterinary , Femoral Fractures/surgery , Fracture Fixation, Internal/veterinary , Fracture Fixation, Internal/methods , Hindlimb/surgery , Finite Element Analysis , Femur/surgery , Models, Biological , Weight-Bearing , Fracture Fixation, Intramedullary/veterinary , Fracture Fixation, Intramedullary/instrumentation
2.
PLoS One ; 18(8): e0289650, 2023.
Article in English | MEDLINE | ID: mdl-37540707

ABSTRACT

In tendon transfer surgeries sufficient stability of the tenorrhaphy is essential. In addition to the choice of a suitable technique, adequate overlap of donor and recipient tendons must be ensured. The aim of this study was to investigate the tensile strength with regard to tendon overlap of a recently published tenorrhaphy, termed Woven-Fridén (WF) tenorrhaphy, which displayed higher tensile strength and lower bulk when compared to the established Pulvertaft technique. For this purpose, WF tenorrhaphies with 1.5 cm, 2 cm, and 3 cm tendon overlap were performed and subsequently tested for different biomechanical properties by tensile testing. Among others, the parameters of ultimate load and stiffness were collected. Native tendons served as controls. A formula was derived to quantify the relation between tendon overlap and ultimate load. We observed that sufficient tensile strength (mean ultimate load of 217 N) is already given with a 2 cm tendon overlap. In addition, with more than 3 cm overlap length only little additional tensile strength is to be expected as the calculated ultimate load of 4 cm overlap (397 N) is approaching the plateau of the maximal ultimate load of 435 N (native tendons).


Subject(s)
Plastic Surgery Procedures , Tendon Transfer , Humans , Suture Techniques , Biomechanical Phenomena , Tendons/surgery , Tensile Strength
3.
In Vivo ; 36(2): 672-677, 2022.
Article in English | MEDLINE | ID: mdl-35241521

ABSTRACT

BACKGROUND/AIM: Increasing economic pressure in modern healthcare necessitates an increase in efficiency in total knee arthroplasty (TKA) while maintaining high-quality outcomes. Removal of debris using pulsatile lavage (PL) during cement polymerization may considerably reduce the operative duration. However, water can penetrate the interface, resulting in impaired implant fixation. The aim of the present study was to investigate the impact of early-onset PL during bone cement polymerization on implant fixation and operative duration. MATERIALS AND METHODS: Cemented implantation of tibial trays was performed in 20 fresh-frozen human tibiae from 10 donors in a matched-pair study design in two groups: 1) PL during cement polymerization; and 2) PL after completion of the polymerization process. The cement penetration depth was analysed by computed tomography (CT), and the pull-out force was measured to evaluate primary implant fixation. The duration of the procedure was recorded for both groups. RESULTS: Comparable pull-out forces were observed in the experimental (2,213 N) and control groups (2,350 N; p=0.68). The mean depth of cement penetration was similar in both groups. PL during cement polymerization could decrease the operative duration by 10 min. CONCLUSION: The application of PL during cement polymerization could significantly reduce operative duration and had no adverse effect on the mechanical fixation of the tibial component.


Subject(s)
Arthroplasty, Replacement, Knee , Arthroplasty, Replacement, Knee/adverse effects , Bone Cements , Cadaver , Cementation/methods , Humans , Therapeutic Irrigation/methods , Tibia/surgery
4.
PLoS One ; 16(6): e0253002, 2021.
Article in English | MEDLINE | ID: mdl-34101755

ABSTRACT

In this study, topology optimized, patient specific osteosynthesis plates (TOPOS-implants) are evaluated for the mandibular reconstruction using fibula segments. These shape optimized implants are compared to a standard treatment with miniplates (thickness: 1.0 mm, titanium grade 4) in biomechanical testing using human cadaveric specimen. Mandible and fibula of 21 body donors were used. Geometrical models were created based on automated segmentation of CT-scans of all specimens. All reconstructions, including cutting guides for osteotomy as well as TOPOS-implants, were planned using a custom-made software tool. The TOPOS-implants were produced by electron beam melting (thickness: 1.0 mm, titanium grade 5). The fibula-reconstructed mandibles were tested in static and dynamic testing in a multi-axial test system, which can adapt to the donor anatomy and apply side-specific loads. Static testing was used to confirm mechanical similarity between the reconstruction groups. Force-controlled dynamic testing was performed with a sinusoidal loading between 60 and 240 N (reconstructed side: 30% reduction to consider resected muscles) at 5 Hz for up to 5 · 105 cycles. There was a significant difference between the groups for dynamic testing: All TOPOS-implants stayed intact during all cycles, while miniplate failure occurred after 26.4% of the planned loading (1.32 · 105 ± 1.46 · 105 cycles). Bone fracture occurred in both groups (miniplates: n = 3, TOPOS-implants: n = 2). A correlation between bone failure and cortical bone thickness in mandible angle as well as the number of bicortical screws used was demonstrated. For both groups no screw failure was detected. In conclusion, the topology optimized, patient specific implants showed superior fatigue properties compared to miniplates in mandibular reconstruction. Additionally, the patient specific shape comes with intrinsic guiding properties to support the reconstruction process during surgery. This demonstrates that the combination of additive manufacturing and topology optimization can be beneficial for future maxillofacial surgery.


Subject(s)
Bone Plates/standards , Equipment Design/standards , Mandibular Fractures/surgery , Mandibular Reconstruction/standards , Stress, Mechanical , Aged , Biomechanical Phenomena , Bone Screws , Female , Humans , Male , Materials Testing
5.
Knee Surg Sports Traumatol Arthrosc ; 29(12): 4163-4171, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33675369

ABSTRACT

PURPOSE: Dislocated tibial avulsions of the posterior cruciate ligament (PCL) require surgical intervention. Several arthroscopic strategies are options to fix the fragment and restore posterior laxity, including two types of suspension button devices: adjustable (self-locking) and rigid knotted systems. Our hypothesis was that a rigid knotted button construct has superior biomechanical properties regarding laxity restoration compared with an adjustable system. Both techniques were compared with standard screw fixation and the native PCL. METHODS: Sixty porcine knees were dissected. The constructs were tested for elongation, stiffness, yield force, load to failure force, and failure mode in a material testing machine. Group N (native, intact PCL) was used as a control group. In group DB (Dogbone™), TR (Tightrope™), and S (screw), a standardized block osteotomy with the osteotomized fragment attached to the PCL was set. The DB and TR groups simulated using a suspension button system with either a rigid knotted (DB) or adjustable system (TR). These groups were compared to a screw technique (S) simulating antegrade screw fixation from posterior. RESULTS: Comparing the different techniques (DB, TR, S), no significant elongation was detected; all techniques achieved a sufficient posterior laxity restoration. Significant elongation in the DB and TR group was detected compared with the native PCL (N). In contrast, screw fixation did not lead to significant elongation. The stiffness, yield load, and load to failure force did not differ significantly between the techniques. None of the techniques reached the same level of yield load and load to failure force as the intact state. CONCLUSION: Arthroscopic suspension button techniques sufficiently restore the posterior laxity and gain a comparable construct strength as an open antegrade screw fixation.


Subject(s)
Posterior Cruciate Ligament , Animals , Biomechanical Phenomena , Bone Screws , Knee Joint/surgery , Posterior Cruciate Ligament/surgery , Swine , Tibia/surgery
6.
Knee Surg Sports Traumatol Arthrosc ; 28(4): 1092-1098, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31489460

ABSTRACT

PURPOSE: Assessment of medial meniscus extrusion (MME) has become increasingly popular in clinical practice to evaluate the dynamic meniscus function and diagnose meniscus pathologies. The purpose of this biomechanical study was to investigate the correlation between MME and the changes in joint contact pressure in varus and valgus alignment. It was hypothesized that varus alignment would result in significantly higher MME along with a higher joint contact pressure in the medial compartment. METHODS: Eight fresh-frozen human cadaveric knees were axially loaded, with a 750 N compressive load, in full extension with the mechanical axis shifted to intersect the tibial plateau at 30% and 40% (varus), 50% (neutral), 60% and 70% (valgus) of its width (TPW). Tibiofemoral peak contact pressure (PCP), mean contact pressure (MCP) and contact area (CA) were determined using pressure-sensitive films. MME was obtained via ultrasound at maximum load. RESULTS: MME was significantly increased from valgus (1.32 ± 0.22 mm) to varus alignment (3.16 ± 0.24 mm; p < 0.001). Peak contact pressure at 30% TPW varus alignment was significantly higher compared to 60% TPW valgus (p = 0.018) and 70% TPW valgus (p < 0.01). MME significantly correlated with PCP (r = 0.56; p < 0.001) and MCP (r = 0.47, p < 0.01) but not with CA (r = 0.23; n.s.). CONCLUSION: MME was significantly increased in varus alignment, compared to neutral or valgus alignment, with an intact medial meniscus. It was also significantly correlated with PCP and MCP within the medial compartment. However, valgus malalignment and neutral axis resulted in reduced MME and contact pressure. Lower limb alignment must be taken into account while assessing MME in clinical practice. LEVEL OF EVIDENCE: Controlled laboratory study.


Subject(s)
Knee Joint/physiology , Menisci, Tibial/physiology , Aged , Biomechanical Phenomena , Cadaver , Female , Humans , Knee Joint/diagnostic imaging , Knee Joint/physiopathology , Male , Menisci, Tibial/diagnostic imaging , Pressure , Stress, Mechanical , Ultrasonography
7.
Knee Surg Sports Traumatol Arthrosc ; 28(4): 1055-1063, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31377827

ABSTRACT

PURPOSE: Arthroscopic partial meniscectomy of medial meniscus tears and varus alignment are considered independent risk factors for increased medial compartment load, thus contributing to the development of medial osteoarthritis. The purpose of this biomechanical study was to investigate the effect of lower limb alignment on contact pressure and contact area in the knee joint following sequential medial meniscus resection. It was hypothesized that a meniscal resection of 50% would lead to a significant overload of the medial compartment in varus alignment. METHODS: Eight fresh-frozen human cadaveric knees were axially loaded with a 750 N compressive force in full extension with the mechanical axis rotated to intersect the tibia plateau at 30%, 40%, 50%, 60% and 70% of its width. Tibiofemoral mean contact pressure (MCP), peak contact pressure (PCP), and contact area (CA) of the medial and lateral compartment were measured separately using pressure-sensitive films (K-Scan 4000, Tekscan) in four different meniscal conditions, respectively, intact, 50% resection, 75% resection, and total meniscectomy. RESULTS: Medial MCP was significantly increased when comparing the intact meniscus to each meniscal resection in all tested alignments (p < 0.05). Following meniscal resection of 50%, MCP was significantly higher with greater varus alignment compared to valgus alignment (p < 0.05). Similarly, medial PCP was higher at varus alignment compared to valgus alignment (p < 0.05). Further resection to 75% and 100% of the meniscus resulted in a significantly higher medial PCP at 30% of tibia plateau width compared to all other alignments (p < 0.05). Medial CA of the intact meniscus decreased significantly after 50%, 75% and 100% meniscal resection in all alignments (p < 0.05). Lateral joint pressure was not significantly increased by greater valgus alignment. CONCLUSION: Lower limb alignment and the extent of medial meniscal resection significantly affect tibiofemoral contact pressure. Combined varus alignment and medial meniscal resection increased MCP and PCP within the medial compartment, whereas valgus alignment prevented medial overload. As a clinical consequence, lower limb alignment should be considered in the treatment of patients undergoing arthroscopic partial meniscectomy with concomitant varus alignment. In patients presenting with ongoing medial joint tenderness and effusion, realignment osteotomy can be a surgical technique to unload the medial compartment.


Subject(s)
Knee Injuries/surgery , Knee Joint/surgery , Meniscectomy/methods , Menisci, Tibial/surgery , Tibial Meniscus Injuries/surgery , Aged , Arthroscopy , Biomechanical Phenomena , Female , Femur/surgery , Humans , Knee , Lower Extremity , Male , Osteotomy , Pressure , Tibia/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...