Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 192
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202409472, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38889093

ABSTRACT

With the aim of producing a photomechanical material for incorporation in soft microrobots, a one-dimensional diene coordination polymer (CP) [Cd(F-bpeb)(3-CBA)2]n (CP1, F-bpeb = 4,4'-((1E,1'E)-(2,5-difluoro-1,4-phenylene)bis(ethene-2,1-diyl))dipyri-dine, 3-HCBA = 3-chlorobenzoic acid) was synthesized and characterized. Irradiation of CP1 with ultraviolet (UV) or visible light causes [2+2] photocycloaddition reactions resulting in the introduction of crystal strain which triggers various types of crystal movements. Composite films of CP1-PVA (SC) fabricated by dispersing CP1 crystals into polyvinyl alcohol (PVA) solution allow amplification of the crystal movement so that the film strips exhibit fast and flexible curling upon photoirradiation. The composite films may be cut into long rectangular strips and folded to simulate soft microrobots which exhibit a variety of fast, flexible and continuous photomechanical movements resembling a human performing various gymnastic exercises.

2.
Inorg Chem ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943593

ABSTRACT

Zwitterionic thiolate ligands have the potential to introduce novel assembly modes and functions for noble metal clusters. However, their utilization in the synthesis of silver clusters remains understudied, particularly for the clusters containing reductive Ag(0) species. In this article, we report the first synthesis of a mixed-valence silver(0/I) cluster protected by zwitterionic Tab as thiolate ligands (Tab = 4-(trimethylammonio)benzenethiolate), denoted as [Ag22(Tab)24](PF6)20·16CH3OH·6Et2O (Ag22·16CH3OH·6Et2O), alongside an Ag(I) cluster [Ag20(Tab)12(PhCOO)10(MeCN)2(H2O)](PF6)10·11MeCN (Ag20·11MeCN). Ag22 has a distinct hierarchical supratetrahedral structure with a central {Ag6} kernel surrounded by four [Ag4(Tab)6]4+ units. High-resolution electrospray ionization mass spectra demonstrate that Ag22 has two free electrons, indicating a superatomic core. Ag20 has a drum-like [Ag12(Tab)6(PhCOO)6(H2O)]6+ inner core capped by two tetrahedral-like [Ag4(Tab)3(PhCOO)2(MeCN)]2+ units. Ag20 can be transformed into Ag22 after its reaction with NaBH4 in solution. Antibacterial measurements reveal that Ag22 has a significantly lower minimum inhibitory concentration than that of the Ag20 cluster. This work not only extends the stabilization of silver(0/I) clusters to neutral thiol ligands but also offers new materials for the development of novel antibacterial materials.

3.
Chem Asian J ; : e202400443, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773630

ABSTRACT

Two polyhedral silver-thiolate clusters, [S@Ag16(Tab)10(MeCN)8](PF6)14 (Ag16) and [Ag12(Tab)6(DMF)12](PF6)12 (Ag12), were synthesized by using electroneutral Tab species as protective ligands (Tab=4-(trimethylammonio)benzenethiolate, DMF=N,N-dimethylformamide, MeCN=acetonitrile). Ag16 has a decahedral shape composed of eight pentagon {Ag5} units and two square {Ag4} units. The structure of Ag12 is a cuboctahedron, a classical Archimedean structure composed of six triangular faces and eight square faces. The former configuration is discovered in silver-thiolate cluster for the first time, possibly benefited from the more flexible coordination between the Tab ligand and Ag+ facilitated by the electropositive -N(CH3)3 + substituent group. Third-order nonlinear optical studies show that both clusters in DMF exhibit reverse saturate absorption response under the irradiation of 532 nm laser.

4.
Adv Sci (Weinh) ; : e2401780, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38666391

ABSTRACT

Creating specific noble metal/metal-organic framework (MOF) heterojunction nanostructures represents an effective strategy to promote water electrolysis but remains rather challenging. Herein, a heterojunction electrocatalyst is developed by growing Ir nanoparticles on ultrathin NiFe-MOF nanosheets supported by nickel foam (NF) via a readily accessible solvothermal approach and subsequent redox strategy. Because of the electronic interactions between Ir nanoparticles and NiFe-MOF nanosheets, the optimized Ir@NiFe-MOF/NF catalyst exhibits exceptional bifunctional performance for the hydrogen evolution reaction (HER) (η10 = 15 mV, η denotes the overpotential) and oxygen evolution reaction (OER) (η10 = 213 mV) in 1.0 m KOH solution, superior to commercial and recently reported electrocatalysts. Density functional theory calculations are used to further investigate the electronic interactions between Ir nanoparticles and NiFe-MOF nanosheets, shedding light on the mechanisms behind the enhanced HER and OER performance. This work details a promising approach for the design and development of efficient electrocatalysts for overall water splitting.

5.
Chem Soc Rev ; 53(10): 5227-5263, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38597808

ABSTRACT

Olefin [2+2] photocycloaddition reactions based on coordination-bond templates provide numerous advantages for the selective synthesis of cyclobutane compounds. This review outlines the recent advances in the design and construction of single crystal platforms of olefinic coordination polymers for precise organic synthesis, in situ exploration of reaction mechanisms, and possible developments as comprehensively as possible. Numerous examples are presented to illustrate how the arrangements of the olefin pairs influence the solid-state photoreactivity and examine the types of cyclobutane products. Furthermore, the photocycloaddition reaction mechanisms are investigated by combining advanced techniques such as single crystal X-ray diffraction, powder X-ray diffraction, nuclear magnetic resonance, infrared spectroscopy, fluorescence spectroscopy, laser scanning confocal microscopy and theoretical calculations. Finally, potential applications resulting from promising physicochemical properties before and after photoreactions are discussed, and existing challenges and possible solutions are also proposed.

6.
Neurosci Lett ; 831: 137788, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38642882

ABSTRACT

Studies have indicated that skilled soccer players possess superior decision-making abilities compared to their less-skilled counterparts. However, the underlying neural mechanism for this phenomenon remains incompletely understood. In our investigation, we explored distinctions in the topology of functional brain networks between skilled and less-skilled soccer players. Employing mediating analysis, we scrutinized the relationships among functional brain network parameters, training duration, and decision-making accuracy. Our findings revealed that skilled soccer players demonstrated significantly higher decision-making accuracy compared to their less-skilled counterparts. Skilled players also exhibited increased values in the cluster coefficient, characteristic path length and local efficiency but lower global efficiency. Moreover, we observed enhanced functional brain connectivity within the occipital and cingulo-opercular networks, as well as between the fronto-parietal and cingulo-opercular networks in skilled soccer players. Cluster coefficient and functional connectivity between fronto-parietal and cingulo-opercular networks had positive mediating effects on the association between training duration and sport decision-making accuracy. In conclusion, our study provides initial evidence for distinctions in functional brain network parameters between soccer players with varying skill levels and their relationship with sport decision-making accuracy.


Subject(s)
Brain , Decision Making , Soccer , Humans , Soccer/physiology , Decision Making/physiology , Male , Young Adult , Brain/physiology , Magnetic Resonance Imaging , Nerve Net/physiology , Adult , Athletes , Adolescent , Athletic Performance/physiology
7.
Nanoscale ; 16(13): 6662-6668, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38487896

ABSTRACT

Developing high-performance bifunctional electrocatalysts towards the hydrogen evolution reaction/oxygen evolution reaction (HER/OER) holds great significance for efficient water splitting. This work presents a two-stage metal-organic thermal evaporation strategy for the fabrication of Ru-based catalysts (Ru/NF) through growing ruthenium (Ru)/ruthenium dioxide (RuO2) nanoparticles (NPs) on nickel foam (NF). The optimal Ru/NF shows remarkable performance in both the HER (26.1 mV) and the OER (235.4 mV) at 10 mA cm-2 in an alkaline medium. The superior OER performance can be attributed to the synergistic interaction between Ru and RuO2, facilitating fast alkaline water splitting. Density functional theory studies reveal that the resulting Ru/RuO2 with the (110) crystal surface reinforces the adsorption of oxygen on RuO2, while metallic Ru improves water dissociation in alkaline electrolytes. Besides, Ru/NF requires only 1.50 V at 10 mA cm-2 for overall water splitting, surpassing 20 wt% Pt/C/NF||RuO2/NF. This work demonstrates the promising potential of a thermal evaporation approach for designing stable Ru-based nanomaterials loaded onto conductive substrates for high performance overall water splitting.

8.
Sci Rep ; 14(1): 7023, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38528027

ABSTRACT

The study aimed to investigate alterations in gray matter volume in individuals undergoing regular soccer training, using high-resolution structural data, while also examining the temporal precedence of such structural alterations. Both voxel-based morphometry and source-based morphometry (SBM) methods were employed to analyze volumetric changes in gray matter between the soccer and control groups. Additionally, a causal network of structural covariance (CaSCN) was built using granger causality analysis on brain structural data ordering by training duration. Significant increases in gray matter volume were observed in the cerebellum in the soccer group. Additionally, the results of the SBM analysis revealed significant increases in gray matter volume in the calcarine and thalamus of the soccer group. The analysis of CaSCN demonstrated that the thalamus had a prominent influence on other brain regions in the soccer group, while the calcarine served as a transitional node, and the cerebellum acted as a prominent node that could be easily influenced by other brain regions. In conclusion, our study identified widely affected regions with increased gray matter volume in individuals with regular soccer training. Furthermore, a temporal precedence relationship among these regions was observed.


Subject(s)
Gray Matter , Soccer , Humans , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging , Brain/diagnostic imaging , Cerebral Cortex
9.
Cogn Neurodyn ; 17(6): 1463-1472, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37974584

ABSTRACT

The importance of physical activity (PA) to people's health has become a consensus around the world, and regular long-term PA has been accepted as an alternative preventive measure for many chronic medical conditions. Although the daily PA have several benefits for the public, the systematic research on its effect in human physiology, cognition and cerebral nerve level is not fully studied. Hence, in this study, we aim to investigate this question in several specific aspects: basal heart rate, executive function, and neural oscillatory activity in the brain. A total of 146 subjects participated in this study and they were divided into two groups. One group (SG) is the long-term training (more than 8 years) subjects in soccer (n = 31), and the other group (CG) is a normal control group (n = 115). The heart rate was monitored with a portable equipment. Besides, 24 subjects (14 in SG and 10 in CG) participated the Go/No-Go task and EEG recording before and after exercise fatigue task. In the physiology level, we found that in the non-training time, the heart rate in CG group is significantly higher than that of the SG group (P < 0.001). In the cognition level, we found that the SG group has a faster reaction time that that of CG group (P < 0.01), while for the accuracy, two groups did show significant difference. In the neural level in the brain, we found a significant abnormal increased beta-band (around 25 Hz) activity in CG group after the exercise fatigue task immediately. Long-term high-intensity physical activity reduces basal heart rate, improves executive function, and improve the central tolerance of the body under the stimulation of fatigue and stress. These benefits of long-term activity could be used as a manual to guide people's healthy life.

10.
J Am Chem Soc ; 145(46): 25103-25108, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37938934

ABSTRACT

Although interlocked three-dimensional molecules display unique properties associated with their spatial structures, their synthesis and study of their host-guest properties remain challenging. We report the formation of a novel [2]catenane, [Et4N]@[(Tp*WS3Cu3Cl)2(cis-bpype)3]2(OTf)5 ([Et4N][1](OTf)5), by self-assembly of the cluster node [Tp*WS3Cu3Cl]+ and the organic linker (Z)-1,2-diphenyl-1,2-bis(4-(pyridin-4-yl)phenyl)ethene (cis-bpype). Single-crystal X-ray and NMR analyses established that [1]4+ is formed by the interpenetration of two cluster-organic cages. Unique cation-in-cation host-guest complexes were observed with this catenane. The crystalline, empty catenane was formed by taking advantage of the electrostatic repulsion-induced weak binding of the host. Encapsulation experiments also reveal that the empty catenane can adaptively encapsulate cations such as [Et4N]+ and [Pr4N]+ in the cross cavity but is unable to encapsulate [Bu4N]+ and [Me4N]+, although the size of the latter is compatible with that of the cavity. Theoretical calculations and volume analysis allow to unravel the ingenious role of catenane structures and the interplay between electrostatic repulsion and attractive noncovalent interactions for size-specific recognition behavior in host-guest systems involving species with similar electric charges.

11.
Inorg Chem ; 62(46): 19080-19086, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37938998

ABSTRACT

Olefinic coordination polymers (CPs) have recently drawn more attention, owing to the many possibilities in conformational conversions and photochemical reactivity that olefin molecules offer. In the presence of different carboxylic acids, we utilize one diolefin ligand 4,4'-((1E,1'E)-(2,5-dimethoxyl-1,4-phenylene)bis(ethene-2,1-diyl))dipyridine (OCH3-bpeb) and Cd(II) to assemble six different crystalline CPs (1-6). By fine-tuning the substituent size, carboxyl group number, and geometrical configuration of carboxylate ligands, these diolefin CPs show quite different crystal architecture models, from one-dimensional intersecting stacking to one-dimensional parallel stacking to three-dimensional interpenetrated structure. Of these, four kinds of CPs (1, 2, 5, and 6) are demonstrated to be photoreactive for [2 + 2] cycloaddition reactions, as confirmed by proton nuclear magnetic resonance and single-crystal X-ray diffraction. Both 2 and 5 can be dimerized into different cyclobutane products in a single-crystal-to-single-crystal manner under visible light, and remarkably, the photocycloaddition reaction of 5 involves a rare phase transition with structural symmetry enhancement from P1̅ to P2/n. This work demonstrates the power of carboxylate ligands in tuning single crystal structures and photocycloaddition reactions of CPs, which provides important references for the further exploration of other physicochemical properties of functionalized olefin-containing complexes.

12.
Nat Commun ; 14(1): 7766, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012167

ABSTRACT

Using highly sensitive and selective in situ techniques to investigate the dynamics of intermediates formation is key to better understand reaction mechanisms. However, investigating the early stages of solid-state reactions/transformations is still challenging. Here we introduce in situ fluorescence spectroscopy to observe the evolution of intermediates during a two-step [2 + 2] photocycloaddition process in a coordination polymer platform. The structural changes and kinetics of each step under ultraviolet light irradiation versus time are accompanied by the gradual increase-decrease of intensity and blue-shift of the fluorescence spectra from the crystals. Monitoring the fluorescence behavior using a laser scanning confocal microscope can directly visualize the inhomogeneity of the photocycloaddition reaction in a single crystal. Theoretical calculations allow us to rationalize the fluorescence behavior of these compounds. We provide a convenient strategy for visualizing the solid-state photocycloaddition dynamics using fluorescence spectroscopy and open an avenue for kinetic studies of a variety of fast reactions.

13.
Front Hum Neurosci ; 17: 1189841, 2023.
Article in English | MEDLINE | ID: mdl-37701501

ABSTRACT

Objective: This study aimed to examine the neural mechanisms underlying the decision-making process of off-ball movements among high-level football players and ordinary college students, as well as the effect of long-term skill training on these neural mechanisms using functional magnetic resonance imaging (fMRI). Methods: The study recruited 20 professional college football players as the expert group (EG) and 20 novice football players with no background in sports-related disciplines as the novice group (NG). The participants performed the motor video observation and button-decision-making tasks, and fMRI data were acquired, pre-processed, and analyzed. Results: During the decision-making process regarding running without the ball, whole-brain fMRI scans were conducted on both the EG and NG. The analysis of these scans revealed noteworthy disparities in brain activity between the two groups. These disparities were observed during tasks involving motor video observation and button-based decision-making. According to the behavioral data, the EG made more correct decisions than the NG (p < 0.05); however, there was no significant difference in their reaction speed (p > 0.05). During video observation, both the EG and NG exhibited simultaneous activation in the frontoparietal cognitive area, primary somatosensory cortex, visual cortex, and insula. However, there were no significant differences between the two groups in terms of activated brain regions [false discovery rate (FDR) corrected to p < 0.05]. Regarding button-press decisions, the areas of the brain that were commonly activated in both the NG and EG were primarily located in the frontoparietal cognitive area, temporal cortex, and cuneus cortex. Notably, the left superior temporal gyrus, left inferior temporal gyrus, and left middle occipital gyrus exhibited greater activation in the NG compared to those in the EG (FDR corrected to p < 0.05). Conclusion: This study demonstrated that during motor video observation, the EG's sports experience and professional knowledge can help them achieve better visual information processing strategies in specific areas of sports. During button decision-making, the EG was more economical, whereas the NG required more brain function activity to process visual information, confirming the "neural efficiency" hypothesis.

14.
Neuroscience ; 530: 133-143, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37640136

ABSTRACT

Long-term motor skill learning has been shown to impact the functional plasticity of the brain. Athletes, as a unique population, exhibit remarkable adaptive changes in the static properties of their brain networks. However, studying the differences between expert and novice athletes using a dynamic brain network framework can provide a fresh perspective on how motor skill learning affects the functional organization of the brain. In this study, we investigated the dynamic properties of brain networks in expert and novice soccer players at the whole-brain, network, and region-based levels. Our findings revealed that expert soccer players displayed reduced integration and increased segregation at the whole-brain level. As for network level, experts exhibited increased segregation and reduced flexibility in the visual network, enhanced integration between the visual and ventral attention networks, and decreased integration in the subcortical-sensorimotor and subcortical-cerebellar networks. Additionally, specific brain regions within the visual network exhibited greater recruitment in expert soccer players compared to novices at the nodal level. Furthermore, classification analyses demonstrated the critical role played by the visual network in the classification process. In conclusion, our study provides new insights into the dynamic properties of brain networks in expert and novice soccer players, and suggests that reduced integration and increased segregation in the visual network may be neuroimaging marker that distinguish expert soccer players from novices. Our findings may have implications for the training and development of athletes and advance our understanding of how motor skill learning affects brain functional organization.

15.
Inorg Chem ; 62(28): 10876-10880, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37389937

ABSTRACT

Single-crystal-to-single-crystal (SCSC) transformations provide more possibilities for phase transitions, which have attracted great attention in crystal engineering. In this paper, we report a series of reversible SCSC transformations between nanoscale two-dimensional layered double hydroxide (LDH) crystals and three-dimensional metal-organic framework crystals. They can proceed not only in solution systems but also on the surface of solid-state polyacrylonitrile films and fibers. Specifically, reversible SCSC transformations can be carried out between nanoscale ZIF-67 and Co-LDH. The Co-LDH nanomaterials displayed excellent oxygen evolution reaction performance. This work has good universality and scalability, which provides a novel avenue for the synthesis of crystal materials and is of great significance for the recycling of resources.

16.
J Am Chem Soc ; 145(27): 14994-15000, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37384612

ABSTRACT

Hydrogenated nitrogen heterocyclic compounds play a critical role in the pharmaceutical, polymer, and agrochemical industries. Recent studies on partial hydrogenation of nitrogen heterocyclic compounds have focused on costly and toxic precious metal catalysts. As an important class of main-group catalysts, frustrated Lewis pairs (FLPs) have been widely applied in catalytic hydrogenation reactions. In principle, the combination of FLPs and metal-organic framework (MOF) is anticipated to efficiently enhance the recyclability performance of FLPs; however, the previously studied MOF-FLPs showed low reactivity in the hydrogenation of N-heterocycles compounds. Herein, we offer a novel P/B type MOF-FLP catalyst that was achieved via a solvent-assisted linker incorporation approach to boost catalytic hydrogenation reactions. Using hydrogen gas under moderate pressure, the proposed P/B type MOF-FLP can serve as a highly efficient heterogeneous catalyst for selective hydrogenation of quinoline and indole to tetrahydroquinoline and indoline-type drug compounds in high yield and excellent recyclability.

17.
Angew Chem Int Ed Engl ; 62(33): e202306719, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37335924

ABSTRACT

Due to its high reactivity and oxidative strength, singlet oxygen (1 O2 ) is used in a variety of fields including organic synthesis, biomedicine, photodynamic therapy and materials science. Despite its importance, the controlled trapping and release of 1 O2 is extremely challenging. Herein, we describe a one-dimensional coordination polymer, CP1, which upon irradiation with visible light, transforms 3 O2 (triplet oxygen) to 1 O2 . CP1 consists of CdII centers bridged by 9,10-bis((E)-2-(pyridin-4-yl)vinyl)anthracene ligands which undergo a [4+2] cycloaddition reaction with 1 O2 , resulting in the generation of CP1-1 O2 . Using microwave irradiation, CP1-1 O2 displays efficient release of 1 O2 , over a period of 30 s. In addition, CP1 exhibits enhanced fluorescence and has an oxygen detection limit of 97.4 ppm. Theoretical calculations reveal that the fluorescence behaviour is dominated by unique through-space conjugation. In addition to describing a highly efficient approach for the trapping and controlled release of 1 O2 , using coordination polymers, this work also provides encouragement for the development of efficient fluorescent oxygen sensors.

18.
Angew Chem Int Ed Engl ; 62(41): e202306048, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37186135

ABSTRACT

Molecular crystals with the ability to transform light energy into macroscopic mechanical motions are a promising class of materials with potential applications in actuating and photonic devices. In regard to such materials, coordination polymers that exhibit dynamic photomechanical motion, associated with a phase transition, are unknown. Herein, we report an intriguing photoactive, one-dimensional ZnII coordination polymer, 1, derived from 1,3,5-tri-4-pyridyl-1,2-ethenylbenzene and 3,5-difluorobenzoate. Single crystals of 1 under UV light irradiation exhibit rapid shrinking and bending, violent bursting-jumping, splitting, and cracking behavior. Single-crystal X-ray diffraction analysis and 1 H NMR spectroscopy reveal an unusual photoinduced phase transition involving a single-crystal-to-single-crystal [2+2] cycloaddition reaction that results in photomechanical responses. Interestingly, crystals of 1, which are triclinic with space group P 1 ‾ ${P\bar{1}}$ , are transformed into a higher symmetry, monoclinic cell with space group C2/c. This process represents a rare example of symmetry enhancement upon photoirradiation. The photomechanical activity is likely due to the sudden release of stress associated with strained molecular geometries and significant solid-state molecular movement arising from cleavage and formation of chemical bonds. A composite membrane fabricated from 1 and polyvinyl alcohol (PVA) also displays interesting photomechanical behavior under UV light illumination, indicating the material's potential as a photoactuator.

19.
J Am Chem Soc ; 145(18): 9982-9987, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37126789

ABSTRACT

Although the synthesis of low-dimensional metal sulfides by assembling cluster-based units is expected to promote the development of optical materials and models of enzyme active centers such as dinitrogenase, it is faced with limited assembly methodology. Herein we present a cut-to-link strategy to generate high-nuclearity assemblies, inspired by the formation of a Z-type dimer of the W-S-Cu analogues of PN cluster through in situ release of active linkers. Four new compounds with structures based on the same {Tp*WS3Cu3} incomplete cubane-like units were obtained using varied combinations of mild reagents. Open-aperture Z-scan measurements demonstrated the highest-nuclearity complex has the largest nonlinear optical absorption coefficient among discrete cluster-based materials reported to date. This approach enables building high-nuclearity metal sulfide clusters through cluster-based building blocks and opens a way to the design and exploration of materials based on well-identified building blocks.

20.
Chem Commun (Camb) ; 59(38): 5757-5760, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37093152

ABSTRACT

A parallel Cu paddle wheel structure was developed to form an efficient C3H6 nano-trap. Benefiting from having this trap, ATC-Cu showed a very high capacity for binding C3H6 and high C3H6/C3H8 selectivity at 298 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...