Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Synchrotron Radiat ; 27(Pt 5): 1240-1246, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32876599

ABSTRACT

X-ray magnetic circular dichroism (XMCD) is a technique commonly used to probe magnetic properties of materials with element and orbital selectivity, which requires the use of circularly polarized (CP) X-rays. It is possible to accomplish XMCD experiments with fixed CP and alternating the magnetic field orientation, but most reliable data are obtained when alternating the magnetization orientation and the polarization between right and left helicities. A versatile strategy has been developed to perform XMCD experiments using a hard X-ray quarter-wave plate, at both polychromatic dispersive and conventional monochromatic optics, in combination with synchronous data acquisition. The switching frequency waveform is fed into a lock-in amplifier to detect and amplify the XMCD signal. The results on a reference sample demonstrate an improvement in data quality and acquisition time. The instrumentation successfully generated 98% of CP X-rays switching the beam helicity at 13 Hz, with the possibility of faster helicity switching once it is installed at the new Brazilian fourth-generation source, SIRIUS.

2.
Rev Sci Instrum ; 80(11): 113902, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19947737

ABSTRACT

We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields (approximately 1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

3.
J Am Chem Soc ; 131(20): 6888-9, 2009 May 27.
Article in English | MEDLINE | ID: mdl-19415891

ABSTRACT

We report evidence that paramagnetism in CdSe QDs can be induced via manipulation of the surface chemistry. Using SQUID magnetometry and X-ray absorption spectroscopy, we demonstrate that the paramagnetic behavior of the CdSe QDs can be varied by changing the ligand end-group functionality of the passivating layer. Contrary to previous reports, no evidence for ferromagnetism was observed. The results suggest that the paramagnetism is induced via pi back-bonding between Cd 4d orbtials and ligands with empty pi* orbitals.

4.
Phys Rev Lett ; 100(4): 045508, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18352301

ABSTRACT

Fe K-edge x-ray magnetic circular dichroism of magnetite (Fe3O4) powders was measured with synchrotron radiation under variable pressure and temperature conditions in diamond anvil cell. The magnetic dichroism was observed to decrease discontinuously by approximately 50% between 12 and 16 GPa, independent of temperature. The magnetic transition is attributed to a high-spin to intermediate-spin transition of Fe2+ ions in the octahedral sites and could account for previously observed structural and electrical anomalies in magnetite at this pressure range. The interpretation of x-ray magnetic circular dichroism data is supported by x-ray emission spectroscopy and theoretical cluster calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...