Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Autoimmun ; 146: 103230, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754237

ABSTRACT

Neonatal Fc receptor (FcRn) recycles immunoglobulin G, and inhibition of FcRn is used clinically for treatment of autoimmune diseases. In this work, using the vesicular stomatitis virus (VSV) mouse infection model system, we determined the role of FcRn during virus infection. While induction of neutralizing antibodies and long-term protection of these antibodies was hardly affected in FcRn deficient mice, FcRn deficiency limited the amount of natural IgG (VSV-specific) antibodies. Lack of natural antibodies (nAbs) limited early control of VSV in macrophages, accelerated propagation of virus in several organs, led to the spread of VSV to the neural tissue resulting in fatal outcomes. Adoptive transfer of natural IgG into FcRn deficient mice limited early propagation of VSV in FcRn deficient mice and enhanced survival of FcRn knockout mice. In line with this, vaccination of FcRn mice with very low dose of VSV prior to infection similarly prevented death after infection. In conclusion we determined the importance of nAbs during VSV infection. Lack of FcRn limited nAbs and thereby enhanced the susceptibility to virus infection.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Histocompatibility Antigens Class I , Immunoglobulin G , Mice, Knockout , Receptors, Fc , Vesicular Stomatitis , Animals , Mice , Immunoglobulin G/immunology , Receptors, Fc/immunology , Receptors, Fc/genetics , Receptors, Fc/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Vesicular Stomatitis/immunology , Antibodies, Viral/immunology , Antibodies, Neutralizing/immunology , Vesiculovirus/immunology , Vesicular stomatitis Indiana virus/immunology , Disease Models, Animal , Adoptive Transfer , Macrophages/immunology , Macrophages/metabolism , Mice, Inbred C57BL
2.
Vaccines (Basel) ; 11(10)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37896966

ABSTRACT

Ubiquitin-specific peptidase 22 (Usp22) cleaves ubiquitin moieties from numerous proteins, including histone H2B and transcription factors. Recently, it was reported that Usp22 acts as a negative regulator of interferon-dependent responses. In the current study, we investigated the role of Usp22 deficiency in acute viral infection with lymphocytic choriomeningitis virus (LCMV). We found that the lack of Usp22 on bone marrow-derived cells (Usp22fl/fl Vav1-Cre mice) reduced the induction of type I and II interferons. A limited type I interferon response did not influence virus replication. However, restricted expression of PD-L1 led to increased frequencies of functional virus-specific CD8+ T cells and rapid death of Usp22-deficient mice. CD8+ T cell depletion experiments revealed that accelerated CD8+ T cells were responsible for enhanced lethality in Usp22 deficient mice. In conclusion, we found that the lack of Usp22 generated a pathological CD8+ T cell response, which gave rise to severe disease in mice.

3.
Cells ; 12(14)2023 07 19.
Article in English | MEDLINE | ID: mdl-37508555

ABSTRACT

Patients on dialysis have dysfunctions of innate and adaptive immune system responses. The transcriptional factor IRF8 (interferon regulatory factor 8) is primarily expressed in plasmacytoid cells (pDCs) and myeloid dendritic cells (mDCs), playing a crucial role in the maturation of dendritic cells, monocytes, and macrophages, and contributing to protection against bacterial infections. The current study analyzed the expression patterns of IRF8 and assessed its association with the risk of infections in 79 dialysis patients compared to 44 healthy controls. Different subsets of leukocytes and the intracellular expression of IRF8 were measured using flow cytometry. Compared to the healthy controls, the dialysis patients showed significantly reduced numbers of pDCs and significantly increased numbers of natural killer cells and classical and intermediate monocytes. The dialysis patients exhibited decreased numbers of IRF8-positive dendritic cells (pDC p < 0.001, mDC1 p < 0.001, mDC2 p = 0.005) and increased numbers of IRF8-positive monocytes (p < 0.001). IRF8 expression in pDC, mDC, and classical monocytes was lower in the dialysis patients than in the controls. Dialysis patients who required hospitalization due to infections within one year of follow-up displayed significantly reduced IRF8 expression levels in pDCs compared to patients without such infections (p = 0.04). Our results suggest that reduced IRF8 expression in pDCs is a potential risk factor predisposing dialysis patients to serious infections.


Subject(s)
Interferon Regulatory Factors , Renal Dialysis , Humans , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Monocytes/metabolism , Lymphocytes/metabolism
4.
Elife ; 112022 09 12.
Article in English | MEDLINE | ID: mdl-36094170

ABSTRACT

Acid ceramidase (Ac) is part of the sphingolipid metabolism and responsible for the degradation of ceramide. As bioactive molecule, ceramide is involved in the regulation of many cellular processes. However, the impact of cell-intrinsic Ac activity and ceramide on the course of Plasmodium infection remains elusive. Here, we use Ac-deficient mice with ubiquitously increased ceramide levels to elucidate the role of endogenous Ac activity in a murine malaria model. Interestingly, ablation of Ac leads to alleviated parasitemia associated with decreased T cell responses in the early phase of Plasmodium yoelii infection. Mechanistically, we identified dysregulated erythropoiesis with reduced numbers of reticulocytes, the preferred host cells of P. yoelii, in Ac-deficient mice. Furthermore, we demonstrate that administration of the Ac inhibitor carmofur to wildtype mice has similar effects on P. yoelii infection and erythropoiesis. Notably, therapeutic carmofur treatment after manifestation of P. yoelii infection is efficient in reducing parasitemia. Hence, our results provide evidence for the involvement of Ac and ceramide in controlling P. yoelii infection by regulating red blood cell development.


Subject(s)
Malaria , Plasmodium yoelii , Acid Ceramidase , Animals , Ceramides/pharmacology , Erythropoiesis , Malaria/drug therapy , Mice , Parasitemia
5.
Int J Cancer ; 150(7): 1198-1211, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34751438

ABSTRACT

Angiogenesis plays an important role during tumor growth and metastasis. We could previously show that Type I interferon (IFN)-deficient tumor-associated neutrophils (TANs) show strong pro-angiogenic activity, and stimulate tumor angiogenesis and growth. However, the exact mechanism responsible for their pro-angiogenic shift is not clear. Here, we set out to delineate the molecular mechanism and factors regulating pro-angiogenic properties of neutrophils in the context of Type I IFN availability. We demonstrate that neutrophils from IFN-deficient (Ifnar1-/- ) mice efficiently release pro-angiogenic factors, such as VEGF, MMP9 or BV8, and thus significantly support the vascular normalization of tumors by increasing the maturation of perivascular cells. Mechanistically, we could show here that the expression of pro-angiogenic factors in neutrophils is controlled by the transcription factor forkhead box protein O3a (FOXO3a), which activity depends on its post-translational modifications, such as deacetylation or phosphorylation. In TANs isolated from Ifnar1-/- mice, we observe significantly elevated SIRT1, resulting in SIRT1-mediated deacetylation of FOXO3a, its nuclear retention and activation. Activated FOXO3a supports in turn the transcription of pro-angiogenic genes in TANs. In the absence of SIRT1, or after its inhibition in neutrophils, elevated kinase MEK/ERK and PI3K/AKT activity is observed, leading to FOXO3a phosphorylation, cytoplasmic transfer and inactivation. In summary, we have found that FOXO3a is a key transcription factor controlling the angiogenic switch of neutrophils. Post-translational FOXO3a modifications regulate its transcriptional activity and, as a result, the expression of pro-angiogenic factors supporting development of vascular network in growing tumors. Therefore, targeting FOXO3a activity could provide a novel strategy of antiangiogenic targeted therapy for cancer.


Subject(s)
Forkhead Box Protein O3/metabolism , Interferon Type I/physiology , Neoplasms/blood supply , Neovascularization, Pathologic/etiology , Neutrophils/physiology , Sirtuin 1/physiology , Acetylation , Animals , Cell Line, Tumor , Humans , Mice , Mice, Inbred C57BL , Protein Processing, Post-Translational
6.
Front Immunol ; 13: 934399, 2022.
Article in English | MEDLINE | ID: mdl-36605206

ABSTRACT

Retroviral envelope (Env) proteins have long been recognized to exhibit immunosuppressive properties, which affect the CD8+ T-cell response to an infection but also to immunization. Interestingly, we previously showed in the Friend murine leukemia virus (F-MuLV) model that the surface Env protein gp70 also plays a role in immunosuppression, in addition to the immunosuppressive function attributed to the transmembrane Env protein. We now demonstrate that immunization with F-MuLV Env leads to a significant increase in interleukin-10 (IL-10)-producing CD4+ T cells and that the induction of CD8+ T-cell responses in the presence of Env is rescued if the capacity of CD4+ T cells to produce IL-10 is abrogated, indicating a mechanistic role of IL-10-producing CD4+ T cells in mediating the Env-induced suppression of CD8+ T-cell responses in Env co-immunization. We found that CD8+ T-cell responses against different immunogens are not all equally affected. On the other hand, suppression of immunity was observed not only in co-immunization experiments but also for immune control of subcutaneous tumor growth after an Env immunization. Finally, we show that suppression of CD8+ T cells by the surface Env protein is observed not only for Friend MuLV Env but also for the Env proteins of other gamma retroviruses. Taken together, our results show that IL-10-producing CD4+ T cells mechanistically underlie the Env-mediated suppression of CD8+ T-cell responses and suggest the presence of an immunosuppressive motif in the surface Env protein of gamma retroviruses.


Subject(s)
Retroviridae Infections , Viral Vaccines , Animals , Mice , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Friend murine leukemia virus , Gene Products, env , Immunosuppression Therapy , Interleukin-10 , Retroviridae , Retroviridae Proteins , Humans
7.
Viruses ; 13(8)2021 07 21.
Article in English | MEDLINE | ID: mdl-34452286

ABSTRACT

Virotherapy research involves the development, exploration, and application of oncolytic viruses that combine direct killing of cancer cells by viral infection, replication, and spread (oncolysis) with indirect killing by induction of anti-tumor immune responses. Oncolytic viruses can also be engineered to genetically deliver therapeutic proteins for direct or indirect cancer cell killing. In this review-as part of the special edition on "State-of-the-Art Viral Vector Gene Therapy in Germany"-the German community of virotherapists provides an overview of their recent research activities that cover endeavors from screening and engineering viruses as oncolytic cancer therapeutics to their clinical translation in investigator-initiated and sponsored multi-center trials. Preclinical research explores multiple viral platforms, including new isolates, serotypes, or fitness mutants, and pursues unique approaches to engineer them towards increased safety, shielded or targeted delivery, selective or enhanced replication, improved immune activation, delivery of therapeutic proteins or RNA, and redirecting antiviral immunity for cancer cell killing. Moreover, several oncolytic virus-based combination therapies are under investigation. Clinical trials in Germany explore the safety and potency of virotherapeutics based on parvo-, vaccinia, herpes, measles, reo-, adeno-, vesicular stomatitis, and coxsackie viruses, including viruses encoding therapeutic proteins or combinations with immune checkpoint inhibitors. These research advances represent exciting vantage points for future endeavors of the German virotherapy community collectively aimed at the implementation of effective virotherapeutics in clinical oncology.


Subject(s)
Neoplasms/therapy , Oncolytic Virotherapy , Oncolytic Viruses , Animals , Clinical Trials as Topic , Genetic Engineering , Germany , Humans , Oncolytic Viruses/genetics
8.
Pathogens ; 10(5)2021 May 19.
Article in English | MEDLINE | ID: mdl-34069514

ABSTRACT

The replication of viruses in secondary lymphoid organs guarantees sufficient amounts of pattern-recognition receptor ligands and antigens to activate the innate and adaptive immune system. Viruses with broad cell tropism usually replicate in lymphoid organs; however, whether a virus with a narrow tropism relies on replication in the secondary lymphoid organs to activate the immune system remains not well studied. In this study, we used the artificial intravenous route of infection to determine whether Influenza A virus (IAV) replication can occur in secondary lymphatic organs (SLO) and whether such replication correlates with innate immune activation. Indeed, we found that IAV replicates in secondary lymphatic tissue. IAV replication was dependent on the expression of Sialic acid residues in antigen-presenting cells and on the expression of the interferon-inhibitor UBP43 (Usp18). The replication of IAV correlated with innate immune activation, resulting in IAV eradication. The genetic deletion of Usp18 curbed IAV replication and limited innate immune activation. In conclusion, we found that IAV replicates in SLO, a mechanism which allows innate immune activation.

9.
Front Med (Lausanne) ; 8: 556776, 2021.
Article in English | MEDLINE | ID: mdl-33834029

ABSTRACT

Cytotoxic CD8+ T-cells play a pivotal role in the pathogenesis of systemic lupus erythematosus (SLE). The aim of this study was to investigate the role of CD107a (LAMP-1) on cytotoxic CD8+ T-cells in SLE-patients in particular with lupus nephritis. Peripheral blood of SLE-patients (n = 31) and healthy controls (n = 21) was analyzed for the expression of CD314 and CD107a by flow cytometry. Kidney biopsies of lupus nephritis patients were investigated for the presence of CD8+ and C107a+ cells by immunohistochemistry and immunofluorescence staining. The percentages of CD107a+ on CD8+ T-cells were significantly decreased in SLE-patients as compared to healthy controls (40.2 ± 18.5% vs. 47.9 ± 15.0%, p = 0.02). This was even more significant in SLE-patients with inactive disease. There was a significant correlation between the percentages of CD107a+CD8+ T-cells and SLEDAI. The evaluation of lupus nephritis biopsies showed a significant number of CD107a+CD8+ T-cells mainly located in the peritubular infiltrates. The intrarenal expression of CD107a+ was significantly correlated with proteinuria. These results demonstrate that CD8+ T-cells of patients with systemic lupus erythematosus have an altered expression of CD107a which seems to be associated with disease activity. The proof of intrarenal CD107a+CD8+ suggests a role in the pathogenesis of lupus nephritis.

10.
Vaccines (Basel) ; 8(1)2020 Mar 23.
Article in English | MEDLINE | ID: mdl-32210083

ABSTRACT

Ebola virus epidemics can be effectively limited by the VSV-EBOV vaccine (Ervebo) due to its rapid protection abilities; however, side effects prevent the broad use of VSV-EBOV as vaccine. Mechanisms explaining the efficient immune activation after single injection with the VSV-EBOV vaccine remain mainly unknown. Here, using the clinically available VSV-EBOV vaccine (Ervebo), we show that the cell-intrinsic expression of the interferon-inhibitor Usp18 in CD169+ macrophages is one important factor modulating the anti-Ebola virus immune response. The absence of Usp18 in CD169+ macrophages led to the reduced local replication of VSV-EBOV followed by a diminished innate as well as adaptive immune response. In line, CD169-Cre+/ki x Usp18fl/fl mice showed reduced innate and adaptive immune responses against the VSV wildtype strain and died quickly after infection, suggesting that a lack of Usp18 makes mice more susceptible to the side effects of the VSV vector. In conclusion, our study shows that Usp18 expression in CD169+ macrophages is one important surrogate marker for effective vaccination against VSV-EBOV, and probably other VSV-based vaccines also.

11.
BMC Nephrol ; 20(1): 430, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31752784

ABSTRACT

BACKGROUND: Dysregulation of the B-cell activating factor (BAFF) system is involved in the pathogenesis of systemic lupus erythematosus (SLE). Increased serum concentrations of BAFF are related to lupus nephritis and disease activity among SLE patients. Recently, a variant of the BAFF-encoding gene, BAFF-var, was identified to be associated with autoimmune diseases, in particular SLE, and to promote the production of soluble BAFF. The present study aimed to assess the prevalence of BAFF-var in a cohort of 195 SLE patients and to analyze the association of the BAFF-var genotype (TNSF13B) with various manifestations of SLE. METHODS: A cohort of 195 SLE patients from Central Europe, including 153 patients from the Swiss SLE Cohort Study and 42 patients from the University Hospital Essen, Germany, underwent genotyping for detection of BAFF-var allele. RESULTS: Of the 195 patients, 18 (9.2%) tested positive for BAFF-var variant according to the minor allele frequency of 4.6%. The presence of BAFF-var was associated with the occurrence of lupus nephritis (p = 0.038) (p = 0.03 and p = 0.003). Among various organ manifestations of SLE, the presence of BAFF-var was associated with the occurrence of lupus nephritis (p = 0.038; odds ratio [OR], 2.4; 95% confidence interval [CI], 0.89-6.34) and renal activity markers such as proteinuria and hematuria (p = 0.03; OR, 2.4; 95% CI, 0.9-6.4 for proteinuria; p = 0.003; OR, 3.9; 95% CI, 1.43-10.76 for hematuria). SLE patients carrying the BAFF-var allele exhibited increased disease activity at study entry, as determined by the physician's global assessment (PGA: p = 0.002; OR, 4.8; 95% CI, 1.54-14.93) and the SLE Disease Activity Index (p = 0.012; OR, 3.5; 95% CI, 1.12-11.18). Consistent with that, the percentage of patients treated with immunosuppressive agents at study entry was higher among those carrying the BAFF-var allele than among those tested negative for BAFF-var (p = 0.006; OR, 3.7; 95% CI, 1.27-10.84). CONCLUSIONS: Our results indicate an association between the BAFF-var genotype and increased severity of SLE. Determining the BAFF-var status of SLE patients may improve the risk stratification of patients for whom the development of lupus nephritis is more likely and thus may be helpful in the follow-up care and treatment of SLE patients.


Subject(s)
Alleles , B-Cell Activating Factor/genetics , Genetic Variation , Lupus Erythematosus, Systemic/genetics , Lupus Nephritis/genetics , Adolescent , Adult , Aged , Aged, 80 and over , B-Cell Activating Factor/blood , Confidence Intervals , Female , Gene Frequency , Genetic Predisposition to Disease , Genotyping Techniques , Germany , Hematuria , Humans , Immunosuppressive Agents/therapeutic use , Lupus Erythematosus, Systemic/drug therapy , Lupus Nephritis/drug therapy , Male , Middle Aged , Odds Ratio , Proteinuria , Switzerland , Young Adult
12.
Front Immunol ; 10: 2255, 2019.
Article in English | MEDLINE | ID: mdl-31608062

ABSTRACT

Clinical administration of Interferon α (IFNα) resulted in limited therapeutic success against some viral infections. Immune modulation of CD8+ T cell responses during IFNα therapy is believed to play a pivotal role in promoting viral clearance. However, these clinical studies primarily focused on IFNα subtype 2. To date, the immunomodulatory roles of the remaining 10-13 IFNα subtypes remains poorly understood, thereby precluding assessments of their potential for more effective treatments. Here, we report that virus-specific CD8+ T cell responses were influenced to various extents by individual IFNα subtypes. IFNα4, 6, and 9 had the strongest effects on CD8+ T cells, including antiproliferative effects, improved cytokine production and cytotoxicity. Interestingly, augmented cytokine responses were dependent on IFNα subtype stimulation of dendritic cells (DCs), while antiproliferative effects and cytotoxicity were mediated by IFNAR signaling in either CD8+ T cells or DCs. Thus, precise modulation of virus-specific CD8+ T cell responses may be feasible for specific antiviral immunotherapies through careful selection and administration of individual IFNα subtypes.


Subject(s)
CD8-Positive T-Lymphocytes/drug effects , Cell Proliferation/drug effects , Interferon-alpha/pharmacology , Virus Replication/drug effects , Animals , Antiviral Agents/immunology , Antiviral Agents/pharmacology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Cell Survival/drug effects , Cell Survival/immunology , Cytokines/immunology , Cytokines/metabolism , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/virology , HEK293 Cells , Humans , Immunologic Factors/immunology , Immunologic Factors/pharmacology , Interferon-alpha/classification , Interferon-alpha/immunology , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Protein Isoforms/immunology , Protein Isoforms/pharmacology , Virus Replication/immunology
13.
Pharmaceuticals (Basel) ; 12(4)2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31547012

ABSTRACT

BACKGROUND: Tamoxifen (TAM) is an estrogen-receptor antagonist, widely used in the adjuvant treatment of early stage estrogen-sensitive breast cancer. Several studies have revealed new biological targets of TAM that mediate the estrogen receptor independent activities of the drug. Recently, the antiviral activity of TAM on replication of human immunodeficiency virus (HIV), hepatitis C virus (HCV) and Herpes simplex virus (HSV-1) in vitro was described. In the current study, we aimed to investigate the effect of TAM on infection with vesicular stomatitis virus (VSV). METHODS: Vero cells were treated with different concentrations of TAM for 24 h and then infected with VSV. Additionally, C57BL/6 mice were pretreated with 4 mg TAM, one day and three days before infection with VSV. Results: Treatment of Vero cells with TAM suppressed the viral replication of VSV in vitro and in vivo. The inhibitory effect of TAM on VSV replication correlated with an enhanced interferon-I response and stimulation of macrophages. Conclusions: TAM was identified as being capable to protect from VSV infection in vitro and in vivo. Consequently, this antiviral function (as an advantageous side-effect of TAM) might give rise to new clinical applications, such as treatment of resistant virus infections, or serve as an add-on to standard antiviral therapy.

14.
Hum Gene Ther ; 28(10): 800-819, 2017 10.
Article in English | MEDLINE | ID: mdl-28870120

ABSTRACT

Virotherapy is a unique modality for the treatment of cancer with oncolytic viruses (OVs) that selectively infect and lyse tumor cells, spread within tumors, and activate anti-tumor immunity. Various viruses are being developed as OVs preclinically and clinically, several of them engineered to encode therapeutic proteins for tumor-targeted gene therapy. Scientists and clinicians in German academia have made significant contributions to OV research and development, which are highlighted in this review paper. Innovative strategies for "shielding," entry or postentry targeting, and "arming" of OVs have been established, focusing on adenovirus, measles virus, parvovirus, and vaccinia virus platforms. Thereby, new-generation virotherapeutics have been derived. Moreover, immunotherapeutic properties of OVs and combination therapies with pharmacotherapy, radiotherapy, and especially immunotherapy have been investigated and optimized. German investigators are increasingly assessing their OV innovations in investigator-initiated and sponsored clinical trials. As a prototype, parvovirus has been tested as an OV from preclinical proof-of-concept up to first-in-human clinical studies. The approval of the first OV in the Western world, T-VEC (Imlygic), has further spurred the involvement of investigators in Germany in international multicenter studies. With the encouraging developments in funding, commercialization, and regulatory procedures, more German engineering will be translated into OV clinical trials in the near future.


Subject(s)
Genetic Vectors , Oncolytic Virotherapy , Oncolytic Viruses , Research , Animals , Clinical Trials as Topic , Combined Modality Therapy , Drug Evaluation, Preclinical , Genetic Therapy/methods , Genetic Vectors/genetics , Germany , Humans , Models, Animal , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...