Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 51(22): 12054-12068, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37933851

ABSTRACT

Confidence in experimental results is critical for discovery. As the scale of data generation in genomics has grown exponentially, experimental error has likely kept pace despite the best efforts of many laboratories. Technical mistakes can and do occur at nearly every stage of a genomics assay (i.e. cell line contamination, reagent swapping, tube mislabelling, etc.) and are often difficult to identify post-execution. However, the DNA sequenced in genomic experiments contains certain markers (e.g. indels) encoded within and can often be ascertained forensically from experimental datasets. We developed the Genotype validation Pipeline (GenoPipe), a suite of heuristic tools that operate together directly on raw and aligned sequencing data from individual high-throughput sequencing experiments to characterize the underlying genome of the source material. We demonstrate how GenoPipe validates and rescues erroneously annotated experiments by identifying unique markers inherent to an organism's genome (i.e. epitope insertions, gene deletions and SNPs).


Subject(s)
Genomics , Genotype , Genome , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods , Datasets as Topic
2.
bioRxiv ; 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36993164

ABSTRACT

Confidence in experimental results is critical for discovery. As the scale of data generation in genomics has grown exponentially, experimental error has likely kept pace despite the best efforts of many laboratories. Technical mistakes can and do occur at nearly every stage of a genomics assay (i.e., cell line contamination, reagent swapping, tube mislabelling, etc.) and are often difficult to identify post-execution. However, the DNA sequenced in genomic experiments contains certain markers (e.g., indels) encoded within and can often be ascertained forensically from experimental datasets. We developed the Genotype validation Pipeline (GenoPipe), a suite of heuristic tools that operate together directly on raw and aligned sequencing data from individual high-throughput sequencing experiments to characterize the underlying genome of the source material. We demonstrate how GenoPipe validates and rescues erroneously annotated experiments by identifying unique markers inherent to an organism’s genome (i.e., epitope insertions, gene deletions, and SNPs).

3.
Genes Dev ; 36(17-18): 985-1001, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36302553

ABSTRACT

Genome-wide, little is understood about how proteins organize at inducible promoters before and after induction and to what extent inducible and constitutive architectures depend on cofactors. We report that sequence-specific transcription factors and their tethered cofactors (e.g., SAGA [Spt-Ada-Gcn5-acetyltransferase], Mediator, TUP, NuA4, SWI/SNF, and RPD3-L) are generally bound to promoters prior to induction ("poised"), rather than recruited upon induction, whereas induction recruits the preinitiation complex (PIC) to DNA. Through depletion and/or deletion experiments, we show that SAGA does not function at constitutive promoters, although a SAGA-independent Gcn5 acetylates +1 nucleosomes there. When inducible promoters are poised, SAGA catalyzes +1 nucleosome acetylation but not PIC assembly. When induced, SAGA catalyzes acetylation, deubiquitylation, and PIC assembly. Surprisingly, SAGA mediates induction by creating a PIC that allows TFIID (transcription factor II-D) to stably associate, rather than creating a completely TFIID-independent PIC, as generally thought. These findings suggest that inducible systems, where present, are integrated with constitutive systems.


Subject(s)
Saccharomyces cerevisiae Proteins , Transcription Factor TFIID , Transcription Factor TFIID/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Promoter Regions, Genetic/genetics , Nucleosomes/genetics , Nucleosomes/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism
4.
Methods Mol Biol ; 1757: 21-30, 2018.
Article in English | MEDLINE | ID: mdl-29761454

ABSTRACT

The Saccharomyces Genome Database (SGD) is a well-established, key resource for researchers studying Saccharomyces cerevisiae. In addition to updating and maintaining the official genomic sequence of this highly studied organism, SGD provides integrated data regarding gene functions and phenotypes, which are extracted from the published literature. The vast amount and variety of data housed in the database can prove challenging to navigate for the first-time user. Therefore, this chapter serves as an introduction describing how to search the database in order to discover new information. We introduce the different types of pages on the website, and describe how to manipulate the tables and diagrams therein to display, download, or analyze the data using various SGD tools.


Subject(s)
Databases, Genetic , Genome, Fungal , Genomics , Saccharomyces/genetics , Computational Biology/methods , Gene Ontology , Genes, Fungal , Genomics/methods , Molecular Sequence Annotation , Phenotype , Software , Web Browser
5.
Database (Oxford) ; 2017(1)2017 01 01.
Article in English | MEDLINE | ID: mdl-28365719

ABSTRACT

The Saccharomyces Genome Database (SGD; www.yeastgenome.org ), the primary genetics and genomics resource for the budding yeast S. cerevisiae , provides free public access to expertly curated information about the yeast genome and its gene products. As the central hub for the yeast research community, SGD engages in a variety of social outreach efforts to inform our users about new developments, promote collaboration, increase public awareness of the importance of yeast to biomedical research, and facilitate scientific discovery. Here we describe these various outreach methods, from networking at scientific conferences to the use of online media such as blog posts and webinars, and include our perspectives on the benefits provided by outreach activities for model organism databases. Database URL: http://www.yeastgenome.org.


Subject(s)
Biomedical Research/education , Databases, Genetic , Genome, Fungal , Saccharomyces cerevisiae/genetics , Blogging , Congresses as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...