Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38612137

ABSTRACT

Mg alloy AZ31B was directly bonded to SK7 with a low alloy content, DP980 with a high Mn content, 316L with a high Cr and high Ni content by laser-gas tungsten arc welding (GTAW) and hybrid direct lap welding. The results showed that the tensile loads of AZ31B/SK7 and AZ31B/DP980 joints were 283 N/mm and 285 N/mm respectively, while the tensile load of AZ31B/316L joint was only 115 N/mm. The fracture and interface microstructures were observed using scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and identified through X-ray diffractometry (XRD). For AZ31B/SK7 and AZ31B/DP980, the interface of the front reaction area and the keyhole reaction area was mainly composed of an Fe-Al phase and an Al-Mn phase. However, for AZ31B/316L, the interface of the keyhole reaction area was mainly composed of an Fe-Al phase and an Al-Mn phase, but a multi-layer composite structure consisting of the Mg17Al12 compound layer and eutectic layer was formed in the front reaction area, which led to a deterioration in the joint property. The influencing mechanism of Mn, Cr and Ni elements in steel on the properties and interface structure of the laser-GTAW lap joint between the Mg alloy and the steel was systematically analyzed.

2.
Nanoscale ; 7(32): 13610-8, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26206591

ABSTRACT

The exploration of high Faradic redox active materials with the advantages of low cost and low toxicity has been attracting great attention for producing high energy storage supercapacitors. Here, the high Faradic redox active material of Cu7S4-NWs coated on a carbon fiber fabric (CFF) is directly used as a binder-free electrode for a high performance flexible solid state supercapacitor. The Cu7S4-NW-CFF supercapacitor exhibits excellent electrochemical performance such as a high specific capacitance of 400 F g(-1) at the scan rate of 10 mV s(-1) and a high energy density of 35 Wh kg(-1) at a power density of 200 W kg(-1), with the advantages of a light weight, high flexibility and long term cycling stability by retaining 95% after 5000 charge-discharge cycles at a constant current of 10 mA. The high Faradic redox activity and high conductance behavior of the Cu7S4-NWs result in a high pseudocapacitive performance with a relatively high specific energy and specific power. Such a new type of pseudocapacitive material of Cu7S4-NWs with its low cost is very promising for actual application in supercapacitors.

SELECTION OF CITATIONS
SEARCH DETAIL
...