Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Carbohydr Polym ; 319: 121185, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37567719

ABSTRACT

Isomaltomegalosaccharides with α-(1 â†’ 4) and α-(1 â†’ 6)-segments solubilize water-insoluble ligands since the former complexes with the ligand and the latter solubilizes the complex. Previously, we enzymatically synthesized isomaltomegalosaccharide with a single α-(1 â†’ 4)-segment at the reducing end (S-IMS) by dextran dextrinase (DDase), but the chain length [average degree of polymerization (DP) ≤ 9] was insufficient for strong encapsulation. We hypothesized that the conjugation of longer α-(1 â†’ 4)-segment afforded the promising function although DDase is incapable to do so. In this study, the cyclodextrin glucanotransferase-catalyzed coupling reaction of α-cyclodextrin to S-IMS synthesized a new α-(1 â†’ 4)-segment at the nonreducing end (N-4S) of S-IMS to form D-IMS [IMS harboring double α-(1 â†’ 4)-segments]. The length of N-4S was modulated by the ratio between α-cyclodextrin and S-IMS, generating N-4Ss with DPs of 7-50. Based on phase-solubility analysis, D-IMS-28.3/13/3 bearing amylose-like helical N-4S with DP of 28.3 displayed a water-soluble complex with aromatic drugs and curcumin. Small-angle X-ray scattering revealed the chain adapted to rigid in solution in which the radius of gyration was estimated to 2.4 nm. Furthermore, D-IMS with short N-4S solubilized flavonoids of less-soluble multifunctional substances. In our research, enzyme-generated functional biomaterials from DDase were developed to maximize the hydrophobic binding efficacy towards water-insoluble bioactive compounds.

2.
Appl Microbiol Biotechnol ; 107(7-8): 2335-2349, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36877249

ABSTRACT

ß-Xylosidases catalyze the hydrolysis of xylooligosaccharides to xylose in the final step of hemicellulose degradation. AnBX, which is a GH3 ß-xylosidase from Aspergillus niger, has a high catalytic efficiency toward xyloside substrates. In this study, we report the three-dimensional structure and the identification of catalytic and substrate binding residues of AnBX by performing site-directed mutagenesis, kinetic analysis, and NMR spectroscopy-associated analysis of the azide rescue reaction. The structure of the E88A mutant of AnBX, determined at 2.5-Å resolution, contains two molecules in the asymmetric unit, each of which is composed of three domains, namely an N-terminal (ß/α)8 TIM-barrel-like domain, an (α/ß)6 sandwich domain, and a C-terminal fibronectin type III domain. Asp288 and Glu500 of AnBX were experimentally confirmed to act as the catalytic nucleophile and acid/base catalyst, respectively. The crystal structure revealed that Trp86, Glu88 and Cys289, which formed a disulfide bond with Cys321, were located at subsite -1. Although the E88D and C289W mutations reduced catalytic efficiency toward all four substrates tested, the substitution of Trp86 with Ala, Asp and Ser increased the substrate preference for glucoside relative to xyloside substrates, indicating that Trp86 is responsible for the xyloside specificity of AnBX. The structural and biochemical information of AnBX obtained in this study provides invaluable insight into modulating the enzymatic properties for the hydrolysis of lignocellulosic biomass. KEY POINTS: • Asp288 and Glu500 of AnBX are the nucleophile and acid/base catalyst, respectively • Glu88 and the Cys289-Cys321 disulfide bond are crucial for the catalytic activity of AnBX • The W86A and W86S mutations in AnBX increased the preference for glucoside substrates.


Subject(s)
Aspergillus niger , Xylosidases , Aspergillus niger/metabolism , Kinetics , Amino Acids , Catalytic Domain , Xylosidases/metabolism , Catalysis , Glucosides , Disulfides , Substrate Specificity , Glycoside Hydrolases/metabolism
3.
Carbohydr Polym ; 305: 120565, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36737177

ABSTRACT

Lipophilic azo dyes are practically water-insoluble, and their dissolution by organic solvents and surfactants is harmful to biological treatment with living cells and enzymes. This study aimed to evaluate the feasibility of a newly synthesized nonreducing terminal chimeric isomaltomegalosaccharide (N-IMS) as a nontoxic solubilizer of four simulated lipophilic azo dye wastes for enzymatic degradation. N-IMS bearing a helical α-(1 â†’ 4)-glucosidic segment derived from a donor substrate α-cyclodextrin was produced by a coupling reaction of cyclodextrin glucanotransferase. Inclusion complexing by N-IMS overcame the solubility issue with equilibrium constants of 1786-242 M-1 (methyl yellow > ethyl red > methyl red > azo violet). Circular dichroism spectra revealed the axial alignment of the aromatic rings in the N-IMS cavity, while UV-visible absorption quenching revealed that the azo bond of methyl yellow was particularly induced. Desorption of the dyes from acidic and neutral soils was specific to aqueous organic over alkali extraction. The dissolution kinetics of the incorporated dyes followed a sigmoid pattern facilitating the subsequent decolorization process with azoreductase. It was demonstrated that after soil extraction, the solid dyes dissolved with N-IMS assistance and spontaneously digested by coupled azoreductase/glucose dehydrogenase (for a cofactor regeneration system) with the liberation of the corresponding aromatic amine.


Subject(s)
Coloring Agents , NADH, NADPH Oxidoreductases , NADH, NADPH Oxidoreductases/metabolism , Coloring Agents/metabolism , Azo Compounds/chemistry , p-Dimethylaminoazobenzene , Biodegradation, Environmental
4.
Carbohydr Polym ; 307: 120629, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36781280

ABSTRACT

Polysaccharides of tamarind seed, a byproduct of the tamarind pulp industry, displayed a potential solubility improvement of lipophilic bioactive molecules but their textural characteristics hinder the dietary formulation. In contrast, the commonly available xyloglucan oligosaccharides (XOSs) with degrees of polymerization (DPs) of 7, 8, and 9 were too short to maintain their ability. The binding capacity of the between sizes is unknown due to a lack of appropriate preparation. We prepared xyloglucan megalosaccharides (XMSs) by partial depolymerization, where term megalosaccharide (MS) defines the middle chain-length saccharide between DPs 10 and 100. Digestion with fungal cellulase enabled reproducible active XMSs. Further identification of pure XMS segments indicated that XMS-B has an average DP of 17.2 (Gal3Glc8Xyl6) with a branched dimer of XOS 8 and 9 and was free of side-chain arabinose, the residue influencing high viscosity. Curcumin, a bioactive pigment, has poor bioavailability because of its water insolubility. XMSs with average DPs of 15.4-24.3 have similarly sufficient capacities to solubilize curcumin. The solubility of curcumin was improved 180-fold by the addition of 50 %, w/v, XMSs, which yielded a clear yellow liquid. Our findings indicated that XMSs were a promising added-value agent in foods and pharmaceuticals for the oral intake of curcumin.


Subject(s)
Curcumin , Tamarindus , Solubility , Carbohydrate Sequence , Xylans/chemistry , Polysaccharides/chemistry , Seeds/chemistry
5.
ACS Omega ; 7(50): 47411-47423, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36570207

ABSTRACT

Glucose, a common monosaccharide in nature, is dominated by the d-enantiomer. Meanwhile, the discovery of l-glucose-utilizing bacteria and the elucidation of their metabolic pathways 10 years ago suggests that l-glucose exists naturally. Most carbohydrates exist as glycosides rather than monosaccharides; therefore, we expected that nature also contains l-glucosides. Sequence analysis within glycoside hydrolase family 29 led us to identify two α-l-glucosidases, ClAgl29A and ClAgl29B, derived from Cecembia lonarensis LW9. ClAgl29A and ClAgl29B exhibited higher K m, k cat, and k cat/K m values for p-nitrophenyl α-l-glucoside than that for p-nitrophenyl α-l-fucoside. Structural analysis of ClAgl29B in complex with l-glucose showed that these enzymes have an active-site pocket that preferentially binds α-l-glucoside, but excludes α-l-fucoside. These results suggest that ClAgl29A and ClAgl29B evolved to hydrolyze α-l-glucoside, implying the existence of α-l-glucoside in nature. Furthermore, α-l-glucosidic linkages (α-l-Glc-(1 → 3)-l-Glc, α-l-Glc-(1 → 2)-l-Glc, and α-l-Glc-(1 → 6)-l-Glc) were synthesized by the transglucosylation activity of ClAgl29A and ClAgl29B. We believe that this study will lead to new research on α-l-glucosides, including determining the physiological effects on humans, and the discovery of novel α-l-glucoside-related enzymes.

6.
Carbohydr Polym ; 291: 119562, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35698333

ABSTRACT

Isomaltomegalosaccharide (IMS) is a long chimeric glucosaccharide composed of α-(1 â†’ 6)- and α-(1 â†’ 4)-linked segments at nonreducing and reducing ends, respectively; the hydrophilicity and hydrophobicity of these segments are expected to lead to bifunctionality. We enzymatically synthesized IMS with average degrees of polymerization (DPs) of 15.8, 19.3, and 23.5, where α-(1 â†’ 4)-segments had DPs of 3, 6, and 9, respectively. IMS exhibited considerably higher water solubility than maltodextrin because of the α-(1 â†’ 6)-segment and an identical resistance to thermal degradation as short dextran. Interaction of IMS with a fluorescent probe of 2-p-toluidinylnaphthalene-6-sulfonate demonstrated that IMS was more hydrophobic than maltodextrin, where the degree of hydrophobicity increased as DP of α-(1 â†’ 4)-segment increased (9 > 6 > 3). Fluorescent pyrene-estimating polarity of IMS was found to be similar to that of methanol or 1-butanol. The bifunctional IMS enhanced the water solubility of quercetin-3-O-glucoside and quercetin: the solubilization of less-soluble bioactive substances is beneficial in carbohydrate industry.


Subject(s)
Coloring Agents , Methanol , Hydrophobic and Hydrophilic Interactions , Solubility , Water/chemistry
7.
Mar Drugs ; 20(4)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35447923

ABSTRACT

The glycoside hydrolase family 17 ß-1,3-glucanase of Vibrio vulnificus (VvGH17) has two unknown regions in the N- and C-termini. Here, we characterized these domains by preparing mutant enzymes. VvGH17 demonstrated hydrolytic activity of ß-(1→3)-glucan, mainly producing laminaribiose, but not of ß-(1→3)/ß-(1→4)-glucan. The C-terminal-truncated mutants (ΔC466 and ΔC441) showed decreased activity, approximately one-third of that of the WT, and ΔC415 lost almost all activity. An analysis using affinity gel containing laminarin or barley ß-glucan revealed a shift in the mobility of the ΔC466, ΔC441, and ΔC415 mutants compared to the WT. Tryptophan residues showed a strong affinity for carbohydrates. Three of four point-mutations of the tryptophan in the C-terminus (W472A, W499A, and W542A) showed a reduction in binding ability to laminarin and barley ß-glucan. The C-terminus was predicted to have a ß-sandwich structure, and three tryptophan residues (Trp472, Trp499, and Trp542) constituted a putative substrate-binding cave. Linker and substrate-binding functions were assigned to the C-terminus. The N-terminal-truncated mutants also showed decreased activity. The WT formed a trimer, while the N-terminal truncations formed monomers, indicating that the N-terminus contributed to the multimeric form of VvGH17. The results of this study are useful for understanding the structure and the function of GH17 ß-1,3-glucanases.


Subject(s)
Vibrio vulnificus , beta-Glucans , Glucans/chemistry , Glycoside Hydrolases/metabolism , Substrate Specificity , Tryptophan , Vibrio vulnificus/genetics , Vibrio vulnificus/metabolism , beta-Glucans/chemistry
8.
Appl Microbiol Biotechnol ; 106(2): 689-698, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35024917

ABSTRACT

Dextran dextrinase (DDase) catalyzes formation of the polysaccharide dextran from maltodextrin. During the synthesis of dextran, DDase also generates the beneficial material isomaltomegalosaccharide (IMS). The term megalosaccharide is used for a saccharide having DP = 10-100 or 10-200 (DP, degree of polymerization). IMS is a chimeric glucosaccharide comprising α-(1 → 6)- and α-(1 → 4)-linked portions at the nonreducing and reducing ends, respectively, in which the α-(1 → 4)-glucosyl portion originates from maltodextrin of the substrate. In this study, IMS was produced by a practical approach using extracellular DDase (DDext) or cell surface DDase (DDsur) of Gluconobacter oxydans ATCC 11894. DDsur was the original form, so we prepared DDext via secretion from intact cells by incubating with 0.5% G6/G7 (maltohexaose/maltoheptaose); this was followed by generation of IMS from various concentrations of G6/G7 substrate at different temperatures for 96 h. However, IMS synthesis by DDext was limited by insufficient formation of α-(1 → 6)-glucosidic linkages, suggesting that DDase also catalyzes elongation of α-(1 → 4)-glucosyl chain. For production of IMS using DDsur, intact cells bearing DDsur were directly incubated with 20% G6/G7 at 45 °C by optimizing conditions such as cell concentration and agitation efficiency, which resulted in generation of IMS (average DP = 14.7) with 61% α-(1 → 6)-glucosyl content in 51% yield. Increases in substrate concentration and agitation efficiency were found to decrease dextran formation and increase IMS production, which improved the reaction conditions for DDext. Under modified conditions (20% G6/G7, agitation speed of 100 rpm at 45 °C), DDext produced IMS (average DP = 14.5) with 65% α-(1 → 6)-glucosyl content in a good yield of 87%. KEY POINTS: • Beneficial IMS was produced using thermostabilized DDase. • Optimum conditions for reduced dextran formation were successfully determined. • A practical approach was established to provide IMS with a great yield of 87%.


Subject(s)
Gluconobacter oxydans , Cell Membrane , Gluconobacter oxydans/genetics , Glucosides , Glucosyltransferases
9.
FEBS J ; 289(4): 1118-1134, 2022 02.
Article in English | MEDLINE | ID: mdl-34665923

ABSTRACT

Glycoside hydrolase family 15 (GH15) inverting enzymes contain two glutamate residues functioning as a general acid catalyst and a general base catalyst, for isomaltose glucohydrolase (IGHase), Glu178 and Glu335, respectively. Generally, a two-catalytic residue-mediated reaction exhibits a typical bell-shaped pH-activity curve. However, IGHase is found to display atypical non-bell-shaped pH-kcat and pH-kcat /Km profiles, theoretically better-fitted to a three-catalytic residue-associated pH-activity curve. We determined the crystal structure of IGHase by the single-wavelength anomalous dispersion method using sulfur atoms and the cocrystal structure of a catalytic base mutant E335A with isomaltose. Although the activity of E335A was undetectable, the electron density observed in its active site pocket did not correspond to an isomaltose but a glycerol and a ß-glucose, cryoprotectant, and hydrolysis product. Our structural and biochemical analyses of several mutant enzymes suggest that Tyr48 acts as a second catalytic base catalyst. Y48F mutant displayed almost equivalent specific activity to a catalytic acid mutant E178A. Tyr48, highly conserved in all GH15 members, is fixed by another Tyr residue in many GH15 enzymes; the latter Tyr is replaced by Phe290 in IGHase. The pH profile of F290Y mutant changed to a bell-shaped curve, suggesting that Phe290 is a key residue distinguishing Tyr48 of IGHase from other GH15 members. Furthermore, F290Y is found to accelerate the condensation of isomaltose from glucose by modifying a hydrogen-bonding network between Tyr290-Tyr48-Glu335. The present study indicates that the atypical Phe290 makes Tyr48 of IGHase unique among GH15 enzymes.


Subject(s)
Glycoside Hydrolases/chemistry , Isomaltose/metabolism , Actinobacteria/enzymology , Biocatalysis , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Isomaltose/chemistry , Models, Molecular , Mutation , Protein Conformation
10.
J Biol Chem ; 296: 100398, 2021.
Article in English | MEDLINE | ID: mdl-33571525

ABSTRACT

Glycoside hydrolase family 68 (GH68) enzymes catalyze ß-fructosyltransfer from sucrose to another sucrose, the so-called transfructosylation. Although regioselectivity of transfructosylation is divergent in GH68 enzymes, there is insufficient information available on the structural factor(s) involved in the selectivity. Here, we found two GH68 enzymes, ß-fructofuranosidase (FFZm) and levansucrase (LSZm), encoded tandemly in the genome of Zymomonas mobilis, displayed different selectivity: FFZm catalyzed the ß-(2→1)-transfructosylation (1-TF), whereas LSZm did both of 1-TF and ß-(2→6)-transfructosylation (6-TF). We identified His79FFZm and Ala343FFZm and their corresponding Asn84LSZm and Ser345LSZm respectively as the structural factors for those regioselectivities. LSZm with the respective substitution of FFZm-type His and Ala for its Asn84LSZm and Ser345LSZm (N84H/S345A-LSZm) lost 6-TF and enhanced 1-TF. Conversely, the LSZm-type replacement of His79FFZm and Ala343FFZm in FFZm (H79N/A343S-FFZm) almost lost 1-TF and acquired 6-TF. H79N/A343S-FFZm exhibited the selectivity like LSZm but did not produce the ß-(2→6)-fructoside-linked levan and/or long levanooligosaccharides that LSZm did. We assumed Phe189LSZm to be a responsible residue for the elongation of levan chain in LSZm and mutated the corresponding Leu187FFZm in FFZm to Phe. An H79N/L187F/A343S-FFZm produced a higher quantity of long levanooligosaccharides than H79N/A343S-FFZm (or H79N-FFZm), although without levan formation, suggesting that LSZm has another structural factor for levan production. We also found that FFZm generated a sucrose analog, ß-D-fructofuranosyl α-D-mannopyranoside, by ß-fructosyltransfer to d-mannose and regarded His79FFZm and Ala343FFZm as key residues for this acceptor specificity. In summary, this study provides insight into the structural factors of regioselectivity and acceptor specificity in transfructosylation of GH68 enzymes.


Subject(s)
Bacterial Proteins/metabolism , Hexosyltransferases/metabolism , Sucrose/chemistry , Sucrose/metabolism , Zymomonas/enzymology , beta-Fructofuranosidase/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Catalysis , Catalytic Domain , Hexosyltransferases/chemistry , Hexosyltransferases/genetics , Mutagenesis, Site-Directed , Stereoisomerism , Structure-Activity Relationship , Zymomonas/isolation & purification , Zymomonas/metabolism , beta-Fructofuranosidase/chemistry , beta-Fructofuranosidase/genetics
11.
Biomed Res ; 37(3): 179-86, 2016.
Article in English | MEDLINE | ID: mdl-27356605

ABSTRACT

The term "megalo-saccharide" is used for saccharides with ten or more saccharide units, whereas the term "oligo-saccharide" is used for saccharides containing fewer than ten monosaccharide units. Megalo-type α-1,6-glucosaccharide (M-IM) is a non-digestible saccharide and not utilized by intestinal bacteria, suggesting that ingested M-IM may encounter ileum Peyer's patches that contains immune cells such as macrophages. Macrophages are responsible for antigen incorporation and presentation during the initial step of immune responses. We investigated whether M-IMs modulate macrophage functions such as cytokine production, nitric oxide production, cell viability, and phagocytosis. Primary macrophages collected from the rats were cultured with the existence of M-IM or lipopolysaccharides (LPS). M-IM and LPS induced the production of tumor necrosis factor α (TNFα), interleukin 6 (IL6), and nitric oxide in the primary macrophages. The gene expression profile of inflammatory factors including TNFα, IL6, and ILlß in M-IM-stimulated cells was similar to that of LPS-stimulated cells. The M-IM did not affect phagocytosis in the primary macrophages. The M-IM-induced TNFα production was suppressed in the cells treated with a tolllike receptor 4 (TLR4) inhibitor called TAK-242. In conclusion, the M-IM modulates cytokine expression via TLR4 signaling and may play a role in the modulation of immune responses.


Subject(s)
Macrophages/immunology , Macrophages/metabolism , Oligosaccharides/immunology , Signal Transduction , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/biosynthesis , Animals , Cell Survival , Cytokines/biosynthesis , Gene Expression Profiling , Nitric Oxide/biosynthesis , Phagocytosis/immunology , Rats , Transcriptome
12.
Bioresour Technol ; 169: 518-524, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25087215

ABSTRACT

Intermolecular interaction of linear-type α-(1 → 6)-glucosyl megalosaccharide rich (L-IMS) and water-insoluble anionic ethyl red was firstly characterized in a comparison with inclusion complexation by cyclodextrins (CDs) to overcome the problem of poor solubility and bioavailability. Phase solubility studies indicated an enhancement of 3- and 9-fold over the solubility in water upon the presence of L-IMS and ß-CD, respectively. (1)H NMR and circular dichrosim spectra revealed the dye forms consisted of 1:1 stoichiometric inclusion complex within the ß-CD cavity, whereas they exhibited non-specific hydrophobic interaction, identified by solvent polarity changes, with L-IMS. The inclusion complex delivered by ß-CD showed an uncompetitive inhibitory-type effect to azoreductase, particularly with high water content that did not promote dye liberation. Addition of the solid dye dispersed into coupled-enzyme reaction system supplied by L-IMS as the dye solubilizer provided usual degradation rate. The dye intermission in series exhibited successful removal with at least 5 cycles was economically feasible.


Subject(s)
Azo Compounds/isolation & purification , Coloring Agents/isolation & purification , Oligosaccharides/chemistry , Quinolinium Compounds/isolation & purification , beta-Cyclodextrins/chemistry , Biodegradation, Environmental , Biological Availability , Circular Dichroism , Kinetics , Phase Transition , Proton Magnetic Resonance Spectroscopy , Protons , Solubility
13.
Int J Biol Macromol ; 69: 27-34, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24836572

ABSTRACT

Reductive alkylation of the amino group of chitosan with ß-cyclodextrin (CD) aldehyde derivatives, i.e., 6-deoxy-6-(4-oxobutyramido)-ß-CD and 6-oxo-ß-CD, gave two ß-CD-linked chitosan derivatives with C4 (4-butylamido) and C0 linking arms, respectively. Degree of substitution (D.S.) of both C4-ß-CD and C0-ß-CD linked chitosan was controlled by the ratio of starting materials. The structures of the products were confirmed by (1)H and (13)C NMR and FT-IR spectra. Their inclusion properties of C4-ß-CD (D.S. 18%) and C0-ß-CD linked chitosan (D.S. 17%) with a fluorescent probe, 6-(p-toluidino)-2-napthalene-6-sulfonate (TNS) were investigated in acetate buffer (pH 4.3) at 25°C. Continuous variation of Job's method revealed that the stoichiometry of inclusion complex of C4-ß-CD linked chitosan-TNS was 1:1, whereas that of C0-ß-CD linked chitosan was not 1:1. The stability constant of C4-ß-CD linked chitosan determined by Benesi-Hildebrand plot was 2.3×10(3)M(-1). These results suggested that length of the linking arms between CD and chitosan is influenced on their inclusion property.


Subject(s)
Chitosan/chemistry , beta-Cyclodextrins/chemistry , Drug Stability , Naphthalenesulfonates/chemistry
14.
J Environ Manage ; 132: 155-64, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24309230

ABSTRACT

This study reports the characterization of the ability of Dermacoccus spp. isolated from the deepest point of the world's oceans for azo dye decolorization. A detailed investigation of Dermacoccus abyssi MT1.1(T) with respect to the azoreductase activity and enzymatic mechanism as well as the potential role of the bacterial strain for biocleaning of industrial dye baths is reported. Resting cells with oxygen-insensitive azoreductase resulted in the rapid decolorization of the polysulfonated dye Brilliant Black BN (BBN) which is a common food colorant. The highest specific decolorization rate (vs) was found at 50 °C with a moderately thermal tolerance for over 1 h. Kinetic analysis showed the high rates and strong affinity of the enzymatic system for the dye with a Vmax = 137 mg/g cell/h and a Km = 19 mg/L. The degradation of BBN produces an initial orange intermediate, 8-amino-5-((4-sulfonatophenyl)diazenyl)naphthalene-2-sulfonic acid, identified by mass spectrometry which is later converted to 4-aminobenzene sulfonic acid. Nearly 80% of the maximum vs is possible achieved in resting cell treatment with the salinity increased up to 5.0% NaCl in reaction media. Therefore, this bacterial system has potential for dye decolorization bioprocesses occurring at high temperature and salt concentrations e.g. for cleaning dye-containing saline wastewaters.


Subject(s)
Actinomycetales/metabolism , Azo Compounds/metabolism , Coloring Agents/metabolism , Water Pollutants, Chemical/metabolism , Water Pollution, Chemical/prevention & control , Kinetics , NADH, NADPH Oxidoreductases/metabolism , Nitroreductases , Pacific Ocean
15.
Bioresour Technol ; 150: 298-306, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24177163

ABSTRACT

This study reports the identification of a new bacterial azoreductase from Brevibacillus laterosporus TISTR1911, its heterologous production in Escherichia coli, the biochemical characterization and immobilization for use in dye biodegradation processes. The recombinant azoreductase (BrAzo) is a monomeric FMN oxygen-insensitive enzyme with a molecular mass of 23 kDa showing a broad specificity for the reduction of synthetic azo dyes. Double hexahistidine-tagged BrAzo was immobilized onto a nickel chelating column and methyl orange was used to assess its degradation potential using a packed-bed reactor. The dye degradation is described by an exponential model in a downstream batchwise continuous flow mode operated with recycling. The complete degradation of methyl orange (170 µM at 600 mL/h) was achieved in 3 h and continued over 9 cycles. Coupling the immobilized BrAzo with glucose dehydrogenase for NADH regeneration yielded a shorter 1.5 h-degradation period that was maintained throughout 16 cycles.


Subject(s)
Bioreactors/microbiology , Brevibacillus/enzymology , Coloring Agents/isolation & purification , Metals/chemistry , NADH, NADPH Oxidoreductases/metabolism , Oxygen/pharmacology , Amino Acid Sequence , Azo Compounds/isolation & purification , Biodegradation, Environmental/drug effects , Brevibacillus/drug effects , Brevibacillus/genetics , Color , Genes, Bacterial/genetics , Hydrogen-Ion Concentration/drug effects , Molecular Sequence Data , NADH, NADPH Oxidoreductases/chemistry , NADH, NADPH Oxidoreductases/isolation & purification , Nitroreductases , Phylogeny , RNA, Ribosomal, 16S/genetics , Recombinant Proteins/isolation & purification , Sequence Alignment , Substrate Specificity , Temperature
16.
Food Chem ; 136(2): 293-6, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23122060

ABSTRACT

The presence of an α-1,6-glucosaccharide enhances absorption of water-soluble quercetin glycosides, a mixture of quercetin-3-O-ß-d-glucoside (Q3G, 31.8%), mono (23.3%), di (20.3%) and more d-glucose adducts with α-1,4-linkage to a d-glucose moiety of Q3G, in a ligated small intestinal loop of anesthetized rats. We prepared α-1,6-glucosaccharides with different degrees of polymerization (DP) enzymatically and separated them into a megalo-isomaltosaccharide-containing fraction (M-IM, average DP=11.0) and an oligo-isomaltosaccharide-containing fraction (O-IM, average DP=3.6). Luminal injection of either saccharide fraction promoted the absorption of total quercetin-derivatives from the small intestinal segment and this effect was greater for M-IM than O-IM addition. M-IM also increased Q3G, but not the quercetin aglycone, concentration in the water-phase of the luminal contents more strongly than O-IM. The enhancement of Q3G solubilization in the luminal contents may be responsible for the increases in the quercetin glucoside absorption promoted by α-1,6-glucosaccharides, especially that by M-IM. These results suggest that the ingestion of α-1,6-glucosaccharides promotes Q3G bioavailability.


Subject(s)
Glycosides/metabolism , Intestine, Small/metabolism , Oligosaccharides/metabolism , Quercetin/metabolism , Animals , Biological Availability , Humans , Intestinal Absorption , Male , Rats , Rats, Wistar
17.
PLoS One ; 7(11): e50658, 2012.
Article in English | MEDLINE | ID: mdl-23209802

ABSTRACT

BACKGROUND: Isomaltosyloligosaccharides (IMO) and dextran (Dex) are hardly digestible in the small intestine and thus influence the luminal environment and affect the maintenance of health. There is wide variation in the degree of polymerization (DP) in Dex and IMO (short-sized IMO, S-IMO; long-sized IMO, L-IMO), and the physiological influence of these compounds may be dependent on their DP. METHODOLOGY/PRINCIPAL FINDINGS: Five-week-old male Wistar rats were given a semi-purified diet with or without 30 g/kg diet of the S-IMO (DP = 3.3), L-IMO (DP = 8.4), or Dex (DP = 1230) for two weeks. Dextran sulfate sodium (DSS) was administered to the rats for one week to induce experimental colitis. We evaluated the clinical symptoms during the DSS treatment period by scoring the body weight loss, stool consistency, and rectal bleeding. The development of colitis induced by DSS was delayed in the rats fed S-IMO and Dex diets. The DSS treatment promoted an accumulation of neutrophils in the colonic mucosa in the rats fed the control, S-IMO, and L-IMO diets, as assessed by a measurement of myeloperoxidase (MPO) activity. In contrast, no increase in MPO activity was observed in the Dex-diet-fed rats even with DSS treatment. Immune cell populations in peripheral blood were also modified by the DP of ingested saccharides. Dietary S-IMO increased the concentration of n-butyric acid in the cecal contents and the levels of glucagon-like peptide-2 in the colonic mucosa. CONCLUSION/SIGNIFICANCE: Our study provided evidence that the physiological effects of α-glucosaccharides on colitis depend on their DP, linkage type, and digestibility.


Subject(s)
Colitis/chemically induced , Oligosaccharides/adverse effects , Oligosaccharides/chemistry , Animals , Dextran Sulfate/toxicity , Dextrans/adverse effects , Dextrans/chemistry , Male , Rats , Rats, Wistar , Structure-Activity Relationship
18.
J Biol Chem ; 287(24): 19927-35, 2012 Jun 08.
Article in English | MEDLINE | ID: mdl-22461618

ABSTRACT

A novel endodextranase from Paenibacillus sp. (Paenibacillus sp. dextranase; PsDex) was found to mainly produce isomaltotetraose and small amounts of cycloisomaltooligosaccharides (CIs) with a degree of polymerization of 7-14 from dextran. The 1,696-amino acid sequence belonging to the glycosyl hydrolase family 66 (GH-66) has a long insertion (632 residues; Thr(451)-Val(1082)), a portion of which shares identity (35% at Ala(39)-Ser(1304) of PsDex) with Pro(32)-Ala(755) of CI glucanotransferase (CITase), a GH-66 enzyme that catalyzes the formation of CIs from dextran. This homologous sequence (Val(837)-Met(932) for PsDex and Tyr(404)-Tyr(492) for CITase), similar to carbohydrate-binding module 35, was not found in other endodextranases (Dexs) devoid of CITase activity. These results support the classification of GH-66 enzymes into three types: (i) Dex showing only dextranolytic activity, (ii) Dex catalyzing hydrolysis with low cyclization activity, and (iii) CITase showing CI-forming activity with low dextranolytic activity. The fact that a C-terminal truncated enzyme (having Ala(39)-Ser(1304)) has 50% wild-type PsDex activity indicates that the C-terminal 392 residues are not involved in hydrolysis. GH-66 enzymes possess four conserved acidic residues (Asp(189), Asp(340), Glu(412), and Asp(1254) of PsDex) of catalytic candidates. Their amide mutants decreased activity (1/1,500 to 1/40,000 times), and D1254N had 36% activity. A chemical rescue approach was applied to D189A, D340G, and E412Q using α-isomaltotetraosyl fluoride with NaN(3). D340G or E412Q formed a ß- or α-isomaltotetraosyl azide, respectively, strongly indicating Asp(340) and Glu(412) as a nucleophile and acid/base catalyst, respectively. Interestingly, D189A synthesized small sized dextran from α-isomaltotetraosyl fluoride in the presence of NaN(3).


Subject(s)
Bacterial Proteins/chemistry , Dextranase/chemistry , Dextrans/chemistry , Paenibacillus/enzymology , Amino Acid Substitution , Bacterial Proteins/classification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalysis , Dextranase/classification , Dextranase/genetics , Dextranase/metabolism , Dextrans/metabolism , Mutation, Missense , Paenibacillus/genetics , Protein Structure, Tertiary
19.
Bioresour Technol ; 100(23): 5616-23, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19589674

ABSTRACT

The nonylphenol (NP) biosorption and desorption potential for fungal biomass used under batch conditions was investigated using kinetics and isotherm models. Fungal biomass of Rhizopus arrhizus TISTR 3610 exhibited preferential uptake of NP, an endocrine disrupting chemicals. Sporangiospores, asexual spores, were immobilised in chitosan beads. The biosorption data of NP on the moist heat inactivated R. arrhizus-chitosan beads were analyzed using four popular adsorption isotherms and, by using non-linear least-regression with the solver add-in in Microsoft Excel, correlated in order with the Fritz-Schluender>Redlich-Peterson>Freundlich>Langmuir isotherms. The pseudo first-order kinetics was found to have the best fit with the experimental data. The diffusivity of NP in the R. arrhizus-chitosan beads was calculated using the shrinking core model, and the diffusivity values were in the ranges of 2.3736x10(-4)-1.8950x10(-4) cm(2) s(-1). Desorption to recover the adsorbed NP from the beads was performed in methanol and was best described using a pseudo second-order kinetic model.


Subject(s)
Biotechnology/methods , Chitosan/chemistry , Phenols/chemistry , Rhizopus/metabolism , Adsorption , Biomass , Diffusion , Hydrogen-Ion Concentration , Kinetics , Methanol/chemistry , Microscopy, Electron, Scanning , Regression Analysis , Spectrophotometry, Ultraviolet/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...