Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 476: 135085, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38968825

ABSTRACT

The impairment of the immune system by fluoride is a public health concern worldwide, yet the underlying mechanism is unclear. Both riboflavin and IL-17A are closely related to immune function and regulate the testicular toxicity of fluoride. However, whether riboflavin or IL-17A is involved in fluoride-induced immunotoxicity is unknown. Here, we first established a male ICR mouse model by treating mice with sodium fluoride (NaF) (100 mg/L) via the drinking water for 91 days. The results showed that fluoride increased the expression of the proinflammatory factors IL-1ß and IL-17A, which led to splenic inflammation and morphological injury. Moreover, the expression levels of the riboflavin transporters SLC52A2 and SLC52A3; the transformation-related enzymes RFK and FLAD1; and the key mitochondrial functional determinants SDH, COX, and ATP in the spleen were measured via real-time PCR, Western blotting, and ELISA. The results revealed that fluoride disrupted riboflavin transport, transformation, metabolism, and mitochondrial function. Furthermore, wild-type (WT) and IL-17A knockout (IL-17A-/-) C57BL/6 J male mice of the same age were treated with NaF (24 mg/kg·bw, equivalent to 100 mg/L) and/or riboflavin sodium phosphate (5 mg/kg·bw) via gavage for 91 days. Similar parameters were evaluated as above. The results confirmed that fluoride increased riboflavin metabolism through RFK but not through FLAD1. Fluoride also affected mitochondrial function and activated neutrophils (marked with Ly6g) and macrophages (marked with CD68) in the spleen. Interestingly, IL-17A partly mediated fluoride-induced riboflavin metabolism disorder and immunotoxicity in the spleen. This work not only reveals a novel toxic mechanism for fluoride but also provides new clues for exploring the physiological function of riboflavin and for diagnosing and treating the toxic effects of fluoride in the environment.

2.
Front Neurol ; 15: 1326879, 2024.
Article in English | MEDLINE | ID: mdl-38361644

ABSTRACT

Objective: To investigate the topical diagnosis, possible etiology and mechanism of spontaneous downbeat nystagmus (sDBN) patients with dizziness/vertigo. Methods: The clinical features of dizziness/vertigo patients accompanied with DBN were retrospectively reviewed in the Vertigo Center of our hospital from January 2018 to March 2021. The clinical features of dizziness/vertigo patients accompanied with DBN were reviewed. Comprehensive VNG, bithermal caloric testing, video-head-impulse test (vHIT), vestibular-evoked myogenic potentials (VEMP), head magnetic resonance imaging (MRI), three-dimensional fluid-attenuated incersion recovery magnetic resonance imaging (3D-FLAIR MRI) in the inner ear, serum immunology and other examinations were to determine the lesion site, and analyze its possible etiology and mechanism. Results: A total of 54 patients were included. Among them, 70.4% (n = 38) of DBN patients were diagnosed with episodic vestibular syndrome (EVS), 22.2% (n = 12) with chronic vestibular syndrome (CVS), and 7.4% (n = 4) with acute vestibular syndrome (AVS). Among all the patients, 51.9% of DBN patients had clear etiology, with central lesions of 29.6% and peripheral diseases of 22.2%. The most common diseases in DBN patients were cerebellar lesions (13.0%, n = 7) and vestibular migraine (13.0%, n = 7), followed by benign positional paroxysmal vertigo (7.4%, n = 4) and drug-related dizziness/vertigo (5.6%, n = 3). The other 48.1% of the patients had unknown etiology. 53.8% (14/26) of patients with idiopathic DBN had decreased semicircular canal function, with 42.9% (6/14) decreased posterior semicircular canal function. The posterior semicircular canal gain in DBN patients decreased compared to the anterior semicircular canal in the same conjugate plane. Patients with peripheral DBN were more prone to horizontal/torsional nystagmus during positional testing. Conclusion: In our study, DBN patients have a relative decrease in posterior semicircular canal gain, which is possibly a particular result found in a subset of downbeat nystagmus patients. The changes in nystagmus during positional testing may be helpful in distinguishing between peripheral and central causes.

3.
Food Chem Toxicol ; 178: 113867, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37269891

ABSTRACT

Fluoride-induced male reproductive failure is a major environmental and human health concern, but interventions are still lacking. Melatonin (MLT) has potential functions in regulating testicular damage and interleukin-17 (IL-17) production. This study aims to explore whether MLT can mitigate fluoride-induced male reproductive toxicity through IL-17A, and screen the potential targets. So the wild type and IL-17A knockout mice were employed and treated with sodium fluoride (100 mg/L) by drinking water and MLT (10 mg/kg.BW, intraperitoneal injection per two days starting from week 16) for 18 weeks. Bone F- concentrations, grade of dental damage, sperm quality, spermatogenic cells counts, histological morphology of testis and epididymis, and the mRNA expression of spermatogenesis and maturation, classical pyroptosis related and immune factor genes were detected respectively. The results revealed that MLT supplementations alleviated fluoride-induced impairment of spermatogenesis and maturation process, protecting the morphology of testis and epididymis through IL-17A pathway, and Tesk1 and Pten were identified as candidate targets from 29 regulation genes. Taken together, this study demonstrated a new physiological role for MLT in the protection against fluoride-induced reproductive injury and possible regulation mechanisms, which providing a useful therapeutic strategy for male reproductive function failure caused by fluoride or other environmental pollutants.


Subject(s)
Fluorides , Melatonin , Mice , Animals , Male , Humans , Fluorides/toxicity , Interleukin-17/genetics , Interleukin-17/metabolism , Melatonin/pharmacology , Sperm Maturation , Semen , Spermatozoa/metabolism , Spermatogenesis , Testis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...