Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 42(8): 1743-1754, 2023 08.
Article in English | MEDLINE | ID: mdl-37170962

ABSTRACT

Amphetamine (AMP) is a chiral psychoactive substance that exhibits enantioselectivity in its pharmacological properties. It has been detected in wastewaters and surface waters and can occur as enantiomeric mixtures, but little is known about its environmental risk and potential enantioselective toxicity to aquatic organisms. Our study aimed to target enantioselectivity in AMP toxicity to the freshwater invertebrate Daphnia magna. Daphnids were subchronically exposed to the racemate (rac-AMP: 0.1, 1.0, and 10 µg/L) and pure enantiomers, (R)-AMP and (S)-AMP (0.1, and 1.0 µg/L, respectively), for 8 days. Morphophysiological, swimming behavior, reproductive and biochemical variables were evaluated during critical life stages (juveniles vs. adults). Some responses were context-dependent and often enantioselective, varying between racemate and enantiomers and across the life stage of the organisms. Overall, rac-AMP stimulated D. magna growth, decreased heart rate and area, affected behavior, and stimulated reproduction. The effect of enantiomers was totally or partially concordant with rac-AMP, except for swimming behavior and reproduction. Enantioselectivity was observed for body size, number of eggs/daphnia, and heart rate (steeper decrease caused by (R)-AMP on day 3). Changes in biochemical parameters were also observed: AMP caused a significant decrease in catalase activity as racemate or pure enantiomers, whereas a decrease in acetylcholinesterase activity was found only for rac-AMP. Evidence for oxidative stress was contradictory, although both enantiomers caused a significant decrease in reactive oxygen species (unlike rac-AMP). Overall, these results show that AMP can interfere in an enantioselective way with aquatic organisms at low concentrations (e.g., 0.1 µg/L), demonstrating the relevance of this kind of study to an accurate environmental risk assessment regarding medium- to long-term exposure to this psychoactive drug. Environ Toxicol Chem 2023;42:1743-1754. © 2023 SETAC.


Subject(s)
Daphnia , Water Pollutants, Chemical , Animals , Acetylcholinesterase , Aquatic Organisms , Reproduction , Water Pollutants, Chemical/analysis , Amphetamines/pharmacology
2.
Molecules ; 28(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36771119

ABSTRACT

MDMA (3,4-methylenedioxymethamphetamine) is a chiral psychoactive recreational drug sold in illicit markets as racemate. Studies on the impact of MDMA on aquatic organisms are scarce. While enantioselectivity in toxicity in animals and humans has been reported, none is reported on aquatic organisms. This study aimed to investigate the ecotoxicological effects of MDMA and its enantiomers in Daphnia magna. For that, enantiomers (enantiomeric purity > 97%) were separated by liquid chromatography using a homemade semipreparative chiral column. Daphnids were exposed to three concentrations of (R,S)-MDMA (0.1, 1.0 and 10.0 µg L-1) and two concentrations of (R)- and (S)-enantiomers (0.1 and 1.0 µg L-1) over the course of 8 days. Morphophysiological responses were dependent on the substance form and daphnia development stage, and they were overall not affected by the (R)-enantiomer. Changes in swimming behaviour were observed for both the racemate and its enantiomers, but enantioselective effects were not observed. Reproductive or biochemical changes were not observed for enantiomers whereas a significant decrease in acetylcholinesterase and catalase activity was noted at the highest concentration of (R,S)-MDMA (10 µg L-1). Overall, this study showed that sub-chronic exposure to MDMA racemate and its enantiomers can interfere with morphophysiological and swimming behaviour of D. magna. In general, the (R)-enantiomer demonstrated less toxicity than the (S)-enantiomer.


Subject(s)
Daphnia , N-Methyl-3,4-methylenedioxyamphetamine , Animals , Humans , N-Methyl-3,4-methylenedioxyamphetamine/toxicity , Stereoisomerism , Acetylcholinesterase/pharmacology , Chromatography
3.
Forensic Sci Int ; 325: 110873, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34153554

ABSTRACT

The consumption of licit and illicit psychoactive drugs (PAD) is ubiquitous in all communities and a serious public health problem. Measuring drug consumption is difficult but essential for health-care professionals, risk assessment and policymakers. Different sources of information have been used for a comprehensive analysis of drug consumption. Among them, Wastewater based epidemiology (WBE) emerged as an essential and complementary methodology for estimating licit and illicit drugs consumption. This methodology can be used for quantification of unchanged drugs or their human-specific metabolites in wastewater for estimation of consumption or screening of new PAD. Although some limitations are still being pointed out (e.g., estimation of the population size, use of suitable biomarkers or pharmacokinetics studies), the non-invasive and potential for monitoring real-time data on geographical and temporal trends in drug use have been showing its capacity as a routine and complementary tool. Chromatographic methods, both non-enantioselective and enantioselective are the analytical tools used for quantification of PAD in wastewaters and further estimation of consumption. Therefore, this manuscript aims to summarize and critically discuss the works used for wastewater analysis of PAD based on WBE using non-enantioselective and enantioselective methods for estimation of consumption. Non-enantioselective methods are among the most reported including for chiral PAD. Nevertheless, a trend has been seen towards the development of enantioselective methods as most PAD are chiral and determination of the enantiomeric fraction can provide additional information (e.g., distinction between consumption or direct disposal, or manufacture processes) and fulfill some WBE gaps.


Subject(s)
Psychotropic Drugs/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Humans , Stereoisomerism , Substance Abuse Detection/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...