Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 105(3): 031801, 2010 Jul 16.
Article in English | MEDLINE | ID: mdl-20867757

ABSTRACT

There has been recent renewed interest in the possibility of additional fermion generations. At the same time there have been significant changes in the relevant electroweak precision constraints, in particular, in the interpretation of several of the low energy experiments. We summarize the various motivations for extra families and analyze them in view of the latest electroweak precision data.

2.
Phys Rev Lett ; 103(25): 251802, 2009 Dec 18.
Article in English | MEDLINE | ID: mdl-20366250

ABSTRACT

New physics models admit the interesting possibility of a Z' weak boson associated with an extra U(1) gauge symmetry and a Higgs boson that is heavy enough to decay into a pair of Z bosons. Then Z' production and decay via Z' --> ZH --> ZZZ has a distinctive LHC signal that is nearly background-free and reconstructs the H and Z' masses and widths. The Z' decay to 3 pairs of leptons is especially distinctive. The ZH decay mode exists even if the Z' is decoupled from leptons, which motivates an independent 6-lepton resonance search regardless of the dilepton search results.

3.
Phys Rev Lett ; 100(4): 041802, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18352261

ABSTRACT

We consider a class of models in which supersymmetry breaking is communicated dominantly via a U1' gauge interaction, which also helps solve the mu problem. Such models can emerge naturally in top-down constructions and are a version of split supersymmetry. The spectrum contains heavy sfermions, Higgsinos, exotics, and Z' approximately 10-100 TeV, light gauginos approximately 100-1000 GeV, a light Higgs boson approximately 140 GeV, and a light singlino. A specific set of U1' charges and exotics is analyzed, and we present five benchmark models. The implications for the gluino lifetime, cold dark matter, and the gravitino and neutrino masses are discussed.

4.
Phys Rev Lett ; 100(9): 091804, 2008 Mar 07.
Article in English | MEDLINE | ID: mdl-18352699

ABSTRACT

We demonstrate that Dirac neutrino masses in the experimentally preferred range are generated within supersymmetric gauge extensions of the standard model with a generalized supersymmetry breaking sector. If the superpotential neutrino Yukawa terms are forbidden by the gauge symmetry [such as a U(1)'], sub-eV scale effective Dirac mass terms can arise at tree level from hard supersymmetry breaking Yukawa couplings, or at one loop due to nonanalytic soft supersymmetry breaking trilinear scalar couplings. The radiative neutrino magnetic and electric dipole moments vanish at one-loop order.

5.
Phys Rev Lett ; 94(6): 061801, 2005 Feb 18.
Article in English | MEDLINE | ID: mdl-15783720

ABSTRACT

We construct an anomaly-free supersymmetric U(1)' model with a secluded U(1)'-breaking sector. We study the one-loop effective potential at finite temperature and show that there exists a strong enough first order electroweak phase transition for electroweak baryogenesis (EWBG) because of the large trilinear term AhhSHdHu in the tree-level Higgs potential. Unlike in the minimal supersymmetric standard model, the lightest top squark can be very heavy. We consider the nonlocal EWBG mechanism in the thin wall regime and find that within uncertainties the observed baryon number can be generated from the tau lepton contribution, with the secluded sector playing an essential role. The chargino and neutralino contributions and the implications for the Z' mass and electric dipole moments are briefly discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...