Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Platelets ; 29(5): 486-495, 2018 Jul.
Article in English | MEDLINE | ID: mdl-28727496

ABSTRACT

Lymphatic endothelial cells (LEC) express the transmembrane receptor podoplanin whose only known endogenous ligand CLEC-2 is found on platelets. Both podoplanin and CLEC-2 are required for normal lymphangiogenesis as mice lacking either protein develop a blood-lymphatic mixing phenotype. We investigated the roles of podoplanin and its interaction with platelets in migration and tube formation by LEC. Addition of platelets or antibody-mediated crosslinking of podoplanin inhibited LEC migration induced by vascular endothelial growth factors (VEGF-A or VEGF-C), but did not modify basal migration or the response to basic fibroblast growth factor or epidermal growth factor. In addition, platelets and podoplanin crosslinking disrupted networks of LEC formed in co-culture with fibroblasts. Depletion of podoplanin in LEC using siRNA negated the pro-migratory effect of VEGF-A and VEGF-C. Inhibition of RhoA or Rho-kinase reduced LEC migration induced by VEGF-C, but had no further effect after crosslinking of podoplanin, suggesting that podoplanin is required for signaling downstream of VEGF-receptors but upstream of RhoA. Together, these data reveal for the first time that podoplanin is an intrinsic specific regulator of VEGF-mediated migration and network formation in LEC and identify crosslinking of podoplanin by platelets or antibodies as mechanisms to modulate this pathway.


Subject(s)
Blood Platelets/metabolism , Cell Movement/physiology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Lectins, C-Type/blood , Membrane Glycoproteins/blood , Vascular Endothelial Growth Factors/pharmacology , Adult , Blood Platelets/drug effects , Cell Communication/drug effects , Cell Communication/physiology , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cells, Cultured , Coculture Techniques , Humans , Lymphangiogenesis , Membrane Glycoproteins/biosynthesis , Membrane Glycoproteins/genetics , Transfection , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor C/pharmacology
2.
Thromb Haemost ; 109(6): 991-8, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23572154

ABSTRACT

CLEC-2 is a C-type lectin receptor which is highly expressed on platelets but also found at low levels on different immune cells. CLEC-2 elicits powerful platelet activation upon engagement by its endogenous ligand, the mucin-type glycoprotein podoplanin. Podoplanin is expressed in a variety of tissues, including lymphatic endothelial cells, kidney podocytes, type I lung epithelial cells, lymph node stromal cells and the choroid plexus epithelium. Animal models have shown that the correct separation of the lymphatic and blood vasculatures during embryonic development is dependent on CLEC-2-mediated platelet activation. Additionally, podoplanin-deficient mice show abnormalities in heart, lungs, and lymphoid tissues, whereas absence of CLEC-2 affects brain development. This review summarises the current understanding of the molecular pathways regulating CLEC-2 and podoplanin function and suggests other physiological and pathological processes where this molecular interaction might exert crucial roles.


Subject(s)
Blood Platelets/cytology , Gene Expression Regulation , Lectins, C-Type/physiology , Membrane Glycoproteins/physiology , Animals , Endothelial Cells/cytology , Glycoproteins/metabolism , Hemostasis , Immune System , Ligands , Lymphangiogenesis , Membrane Glycoproteins/metabolism , Mice , Platelet Activation , Platelet Aggregation Inhibitors/therapeutic use , Thrombosis/metabolism
3.
Blood ; 119(7): 1747-56, 2012 Feb 16.
Article in English | MEDLINE | ID: mdl-22186994

ABSTRACT

The C-type lectin receptor CLEC-2 signals through a pathway that is critically dependent on the tyrosine kinase Syk. We show that homozygous loss of either protein results in defects in brain vascular and lymphatic development, lung inflation, and perinatal lethality. Furthermore, we find that conditional deletion of Syk in the hematopoietic lineage, or conditional deletion of CLEC-2 or Syk in the megakaryocyte/platelet lineage, also causes defects in brain vascular and lymphatic development, although the mice are viable. In contrast, conditional deletion of Syk in other hematopoietic lineages had no effect on viability or brain vasculature and lymphatic development. We show that platelets, but not platelet releasate, modulate the migration and intercellular adhesion of lymphatic endothelial cells through a pathway that depends on CLEC-2 and Syk. These studies found that megakaryocyte/platelet expression of CLEC-2 and Syk is required for normal brain vasculature and lymphatic development and that platelet CLEC-2 and Syk directly modulate lymphatic endothelial cell behavior in vitro.


Subject(s)
Blood Platelets/metabolism , Cell Lineage/genetics , Growth and Development/genetics , Intracellular Signaling Peptides and Proteins/physiology , Lectins, C-Type/physiology , Megakaryocytes/metabolism , Protein-Tyrosine Kinases/physiology , Animals , Animals, Newborn , Blood Platelets/physiology , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Lineage/physiology , Cells, Cultured , Embryo, Mammalian , Female , Gene Expression Regulation, Developmental , Growth and Development/immunology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Megakaryocytes/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pregnancy , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Syk Kinase , Thrombopoiesis/genetics , Thrombopoiesis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...