Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res B Appl Biomater ; 108(1): 174-182, 2020 01.
Article in English | MEDLINE | ID: mdl-30950569

ABSTRACT

The application of strontium is one option for the clinical treatment of osteoporosis-a disease characterized by reduced bone density and quality-in order to reduce the risk of vertebral and nonvertebral fractures. Unlike other drugs used in osteoporosis therapy, strontium shows a dual effect on bone metabolism by attenuating cellular resorption and simultaneously enhancing new bone tissue formation. Current concerns regarding the systemic application of highly dosed strontium ranelate led to the development of strontium-modified scaffolds based on mineralized collagen (MCM) capable to release biologically active Sr2+ ions directly at the fracture site. In this study, we investigated the regenerative potential of these scaffolds. For in vitro investigations, human mesenchymal stromal cells were cultivated on the scaffolds for 21 days (w/ and w/o osteogenic supplements). Biochemical analysis revealed a significant promoting effect on proliferation rate and osteogenic differentiation on strontium-modified scaffolds. In vivo, scaffolds were implanted in a murine segmental bone defect model-partly additionally functionalized with the osteogenic growth factor bone morphogenetic protein 2 (BMP-2). After 6 weeks, bridging calluses were obtained in BMP-2 functionalized scaffolds; the quality of the newly formed bone tissue by means of morphological scores was clearly enhanced in strontium-modified scaffolds. Histological analysis revealed increased numbers of osteoblasts and blood vessels, decreased numbers of osteoclasts, and significantly enhanced mechanical properties. These results indicate that the combined release of Sr2+ ions and BMP-2 from the biomimetic scaffolds is a promising strategy to enhance bone regeneration, especially in patients suffering from osteoporosis. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:174-182, 2020.


Subject(s)
Bone Morphogenetic Protein 2/metabolism , Bone Regeneration , Femoral Fractures/therapy , Femur/metabolism , Mesenchymal Stem Cells/metabolism , Strontium/pharmacology , Tissue Scaffolds , Animals , Bony Callus/metabolism , Bony Callus/pathology , Femoral Fractures/metabolism , Femoral Fractures/pathology , Femur/pathology , Humans , Male , Mesenchymal Stem Cells/pathology , Mice , Mice, Nude
2.
J Biomed Mater Res A ; 104(9): 2126-34, 2016 09.
Article in English | MEDLINE | ID: mdl-27060915

ABSTRACT

The treatment of critical size bone defects represents a challenge. The growth factor bone morphogenetic protein 2 (BMP-2) is clinically established but has potentially adverse effects when used at high doses. The aim of this study was to evaluate if stromal derived factor-1 alpha (SDF-1α) and BMP-2 released from heparinized mineralized collagen type I matrix (MCM) scaffolds have a cumulative effect on bone regeneration. MCM scaffolds were functionalized with heparin, loaded with BMP-2 and/or SDF-1α and implanted into a murine critical size femoral bone defect (control group, low dose BMP-2 group, low dose BMP-2 + SDF-1α group, and high dose BMP-2 group). After 6 weeks, both the low dose BMP-2 + SDF-1α group (5.8 ± 0.6 mm³, p = 0.0479) and the high dose BMP-2 group (6.5 ± 0.7 mm³, p = 0.008) had a significantly increased regenerated bone volume compared to the control group (4.2 ± 0.5 mm³). There was a higher healing score in the low dose BMP-2 + SDF-1α group (median grade 8; Q1-Q3 7-9; p = 0.0357) than in the low dose BMP-2 group (7; Q1-Q3 5-9) histologically. This study showed that release of BMP-2 and SDF-1α from heparinized MCM scaffolds allows for the reduction of the applied BMP-2 concentration since SDF-1α seems to enhance the osteoinductive potential of BMP-2. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2126-2134, 2016.


Subject(s)
Bone Morphogenetic Protein 2 , Bone Regeneration/drug effects , Chemokine CXCL12 , Collagen Type I/chemistry , Femur , Heparin/chemistry , Tissue Scaffolds/chemistry , Animals , Bone Morphogenetic Protein 2/chemistry , Bone Morphogenetic Protein 2/pharmacology , Chemokine CXCL12/chemistry , Chemokine CXCL12/pharmacology , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Femur/injuries , Femur/metabolism , Femur/pathology , Mice , Mice, Nude
SELECTION OF CITATIONS
SEARCH DETAIL
...