Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
Circulation ; 146(23): 1758-1778, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36259389

ABSTRACT

BACKGROUND: Phosphodiesterase 3A (PDE3A) gain-of-function mutations cause hypertension with brachydactyly (HTNB) and lead to stroke. Increased peripheral vascular resistance, rather than salt retention, is responsible. It is surprising that the few patients with HTNB examined so far did not develop cardiac hypertrophy or heart failure. We hypothesized that, in the heart, PDE3A mutations could be protective. METHODS: We studied new patients. CRISPR-Cas9-engineered rat HTNB models were phenotyped by telemetric blood pressure measurements, echocardiography, microcomputed tomography, RNA-sequencing, and single nuclei RNA-sequencing. Human induced pluripotent stem cells carrying PDE3A mutations were established, differentiated to cardiomyocytes, and analyzed by Ca2+ imaging. We used Förster resonance energy transfer and biochemical assays. RESULTS: We identified a new PDE3A mutation in a family with HTNB. It maps to exon 13 encoding the enzyme's catalytic domain. All hitherto identified HTNB PDE3A mutations cluster in exon 4 encoding a region N-terminally from the catalytic domain of the enzyme. The mutations were recapitulated in rat models. Both exon 4 and 13 mutations led to aberrant phosphorylation, hyperactivity, and increased PDE3A enzyme self-assembly. The left ventricles of our patients with HTNB and the rat models were normal despite preexisting hypertension. A catecholamine challenge elicited cardiac hypertrophy in HTNB rats only to the level of wild-type rats and improved the contractility of the mutant hearts, compared with wild-type rats. The ß-adrenergic system, phosphodiesterase activity, and cAMP levels in the mutant hearts resembled wild-type hearts, whereas phospholamban phosphorylation was decreased in the mutants. In our induced pluripotent stem cell cardiomyocyte models, the PDE3A mutations caused adaptive changes of Ca2+ cycling. RNA-sequencing and single nuclei RNA-sequencing identified differences in mRNA expression between wild-type and mutants, affecting, among others, metabolism and protein folding. CONCLUSIONS: Although in vascular smooth muscle, PDE3A mutations cause hypertension, they confer protection against hypertension-induced cardiac damage in hearts. Nonselective PDE3A inhibition is a final, short-term option in heart failure treatment to increase cardiac cAMP and improve contractility. Our data argue that mimicking the effect of PDE3A mutations in the heart rather than nonselective PDE3 inhibition is cardioprotective in the long term. Our findings could facilitate the search for new treatments to prevent hypertension-induced cardiac damage.


Subject(s)
Heart Failure , Hypertension , Induced Pluripotent Stem Cells , Humans , Rats , Animals , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , X-Ray Microtomography , Induced Pluripotent Stem Cells/metabolism , Hypertension/complications , Hypertension/genetics , Myocytes, Cardiac/metabolism , Cardiomegaly , RNA
3.
Circulation ; 142(2): 133-149, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32524868

ABSTRACT

BACKGROUND: High blood pressure is the primary risk factor for cardiovascular death worldwide. Autosomal dominant hypertension with brachydactyly clinically resembles salt-resistant essential hypertension and causes death by stroke before 50 years of age. We recently implicated the gene encoding phosphodiesterase 3A (PDE3A); however, in vivo modeling of the genetic defect and thus showing an involvement of mutant PDE3A is lacking. METHODS: We used genetic mapping, sequencing, transgenic technology, CRISPR-Cas9 gene editing, immunoblotting, and fluorescence resonance energy transfer. We identified new patients, performed extensive animal phenotyping, and explored new signaling pathways. RESULTS: We describe a novel mutation within a 15 base pair (bp) region of the PDE3A gene and define this segment as a mutational hotspot in hypertension with brachydactyly. The mutations cause an increase in enzyme activity. A CRISPR/Cas9-generated rat model, with a 9-bp deletion within the hotspot analogous to a human deletion, recapitulates hypertension with brachydactyly. In mice, mutant transgenic PDE3A overexpression in smooth muscle cells confirmed that mutant PDE3A causes hypertension. The mutant PDE3A enzymes display consistent changes in their phosphorylation and an increased interaction with the 14-3-3θ adaptor protein. This aberrant signaling is associated with an increase in vascular smooth muscle cell proliferation and changes in vessel morphology and function. CONCLUSIONS: The mutated PDE3A gene drives mechanisms that increase peripheral vascular resistance causing hypertension. We present 2 new animal models that will serve to elucidate the underlying mechanisms further. Our findings could facilitate the search for new antihypertensive treatments.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Hypertension/genetics , Mutation , Alleles , Amino Acid Substitution , Animals , Animals, Genetically Modified , Arterial Pressure , Biomarkers/blood , Biomarkers/urine , Brachydactyly/diagnosis , Brachydactyly/genetics , CRISPR-Cas Systems , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , DNA Mutational Analysis , Disease Models, Animal , Enzyme Activation , Gene Targeting , Genetic Association Studies/methods , Genotype , Immunohistochemistry , Isoenzymes , Male , Pedigree , Phenotype , Radiography , Rats , Renin-Angiotensin System/genetics
4.
Physiol Genomics ; 27(2): 108-13, 2006 Oct 11.
Article in English | MEDLINE | ID: mdl-16835352

ABSTRACT

We previously identified a quantitative trait locus (QTL) for stroke proneness between the kallikrein (Klk) and Mt1pa markers on rat chromosome 1. To gain functional insights, we constructed congenic strains by introgressing either the whole or selected chromosomal segments from the stroke-prone (SHRsp) onto the stroke-resistant (SHRsr) spontaneously hypertensive rat genome and vice versa. The phenotype was the latency to develop stroke under a Japanese high-salt, low-potassium diet for 3 mo [known as Japanese diet (JD)]. Blood pressure (BP) was measured by tail cuff throughout the experiment. Urinary protein excretion was monitored in all lines under JD. The SHRsp-derived lines carrying the SHRsr allele, and particularly the D1Rat134-Mt1pa chromosomal segment, had a significant delay of stroke occurrence and improved survival compared with SHRsp (P < 0.001). On the other hand, a significant occurrence of stroke events (20%) was detected in the reciprocal lines by the end of the 3-mo treatment with JD (P = 0.003). The stroke phenotype was also associated with increased proteinuria. Our results underscore the functional importance of the Chr 1 stroke QTL. Furthermore, they underscore the utility of stroke/congenic lines in dissecting the genetics of stroke.


Subject(s)
Quantitative Trait Loci , Rats, Inbred SHR/genetics , Rodent Diseases/genetics , Stroke/veterinary , Alleles , Animals , Animals, Congenic/genetics , Blood Pressure , Body Weight , Brain Ischemia/etiology , Brain Ischemia/genetics , Brain Ischemia/pathology , Brain Ischemia/veterinary , Chromosome Mapping , Crosses, Genetic , Female , Genetic Predisposition to Disease , Genotype , Male , Models, Animal , Potassium, Dietary/administration & dosage , Proteinuria/genetics , Proteinuria/veterinary , Rats , Sodium Chloride, Dietary/toxicity , Stroke/etiology , Stroke/genetics , Stroke/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...