Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 43(2): 245-258, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37888867

ABSTRACT

Only a fraction of the total number of per- and polyfluoroalkyl substances (PFAS) are monitored on a routine basis using targeted chemical analyses. We report on an approach toward identifying bioactive substances in environmental samples using effect-directed analysis by combining toxicity testing, targeted chemical analyses, and suspect screening. PFAS compete with the thyroid hormone thyroxin (T4 ) for binding to its distributor protein transthyretin (TTR). Therefore, a TTR-binding bioassay was used to prioritize unknown features for chemical identification in a PFAS-contaminated sediment sample collected downstream of a factory producing PFAS-coated paper. First, the TTR-binding potencies of 31 analytical PFAS standards were determined. Potencies varied between PFAS depending on carbon chain length, functional group, and, for precursors to perfluoroalkyl sulfonic acids (PFSA), the size or number of atoms in the group(s) attached to the nitrogen. The most potent PFAS were the seven- and eight-carbon PFSA, perfluoroheptane sulfonic acid (PFHpS) and perfluorooctane sulfonic acid (PFOS), and the eight-carbon perfluoroalkyl carboxylic acid (PFCA), perfluorooctanoic acid (PFOA), which showed approximately four- and five-times weaker potencies, respectively, compared with the native ligand T4 . For some of the other PFAS tested, TTR-binding potencies were weak or not observed at all. For the environmental sediment sample, not all of the bioactivity observed in the TTR-binding assay could be assigned to the PFAS quantified using targeted chemical analyses. Therefore, suspect screening was applied to the retention times corresponding to observed TTR binding, and five candidates were identified. Targeted analyses showed that the sediment was dominated by the di-substituted phosphate ester of N-ethyl perfluorooctane sulfonamido ethanol (SAmPAP diester), whereas it was not bioactive in the assay. SAmPAP diester has the potential for (bio)transformation into smaller PFAS, including PFOS. Therefore, when it comes to TTR binding, the hazard associated with this substance is likely through (bio)transformation into more potent transformation products. Environ Toxicol Chem 2024;43:245-258. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Prealbumin , Alkanesulfonic Acids/analysis , Sulfonic Acids , Fluorocarbons/toxicity , Carbon
2.
Environ Sci Process Impacts ; 24(2): 330-342, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35079763

ABSTRACT

The extensive use of per- and polyfluorinated alkyl substances (PFAS) has resulted in many environmental point and diffuse sources. Identifying the source responsible for a pollution hot spot is vital for assessing remediation measures, however, as there are many possible sources of environmental PFAS pollution, this can be challenging. Chemical fingerprinting has been proposed as an approach to identify contamination sources. Here, concentrations and profiles (relative distribution profiles) of routinely targeted PFAS in freshwater fish from eight sites in Norway, representing three different sources: (1) production of paper products, (2) the use of aqueous film forming foams (AFFF), and (3) long-range atmospheric transport, were investigated. The data were retrieved from published studies. Results showed that fingerprinting of PFAS in fish can be used to identify the dominant exposure source(s), and the profiles associated with the different sources were described in detail. Based on the results, the liver was concluded to be better suited for source tracking compared to muscle. PFAS fingerprints originating from AFFF were dominated by perfluorooctanesulfonate (PFOS) and other perfluoroalkanesulfonic acids (PFSA). Fingerprints originating from both long-range atmospheric transport and production of paper products were associated with high percentages of long chained perfluoroalkyl carboxylic acids (PFCA). However, there were differences between the two latter sources with respect to the ∑PFAS concentrations and ratios of specific PFCA pairs (PFUnDA/PFDA and PFTrDA/PFDoDA). Low ∑PFAS concentrations were detected in fish exposed mainly to PFAS via long-range atmospheric transport. In contrast, ∑PFAS concentrations were high and high percentages of PFOS were detected in fish exposed to pollution from production of paper products. The source-specific fingerprints described here can be used for source tracking.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Animals , Carboxylic Acids , Fishes , Fluorocarbons/analysis , Fresh Water , Water Pollutants, Chemical/analysis
3.
Environ Sci Process Impacts ; 23(4): 588-604, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33704290

ABSTRACT

Although poly- and perfluorinated alkyl substances (PFAS) are ubiquitous in the Arctic, their sources and fate in Arctic marine environments remain unclear. Herein, abiotic media (water, snow, and sediment) and biotic media (plankton, benthic organisms, fish, crab, and glaucous gull) were sampled to study PFAS uptake and fate in the marine food web of an Arctic Fjord in the vicinity of Longyearbyen (Svalbard, Norwegian Arctic). Samples were collected from locations impacted by a firefighting training site (FFTS) and a landfill as well as from a reference site. Mean concentration in the landfill leachate was 643 ± 84 ng L-1, while it was 365 ± 8.0 ng L-1 in a freshwater pond and 57 ± 4.0 ng L-1 in a creek in the vicinity of the FFTS. These levels were an order of magnitude higher than in coastal seawater of the nearby fjord (maximum level , at the FFTS impacted site). PFOS was the most predominant compound in all seawater samples and in freshly fallen snow (63-93% of ). In freshwater samples from the Longyear river and the reference site, PFCA ≤ C9 were the predominant PFAS (37-59%), indicating that both local point sources and diffuse sources contributed to the exposure of the marine food web in the fjord. concentrations increased from zooplankton (1.1 ± 0.32 µg kg-1 ww) to polychaete (2.8 ± 0.80 µg kg-1 ww), crab (2.9 ± 0.70 µg kg-1 ww whole-body), fish liver (5.4 ± 0.87 µg kg-1 ww), and gull liver (62.2 ± 11.2 µg kg-1). PFAS profiles changed with increasing trophic level from a large contribution of 6:2 FTS, FOSA and long-chained PFCA in zooplankton and polychaetes to being dominated by linear PFOS in fish and gull liver. The PFOS isomer profile (branched versus linear) in the active FFTS and landfill was similar to historical ECF PFOS. A similar isomer profile was observed in seawater, indicating major contribution from local sources. However, a PFOS isomer profile enriched by the linear isomer was observed in other media (sediment and biota). Substitutes for PFOS, namely 6:2 FTS and PFBS, showed bioaccumulation potential in marine invertebrates. However, these compounds were not found in organisms at higher trophic levels.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids/analysis , Animals , Arctic Regions , Environmental Monitoring , Fluorocarbons/analysis , Food Chain , Norway , Water Pollutants, Chemical/analysis
4.
Environ Sci Technol ; 54(20): 13077-13089, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32986950

ABSTRACT

The environmental behavior of perfluorinated alkyl acids (PFAA) and their precursors was investigated in lake Tyrifjorden, downstream a factory producing paper products coated with per- and polyfluorinated alkyl substances (PFAS). Low water concentrations (max 0.18 ng L-1 linear perfluorooctanesulfonic acid, L-PFOS) compared to biota (mean 149 µg kg-1 L-PFOS in perch livers) resulted in high bioaccumulation factors (L-PFOS BAFPerch liver: 8.05 × 105-5.14 × 106). Sediment concentrations were high, particularly for the PFOS precursor SAmPAP diester (max 1 872 µg kg-1). Biota-sediment accumulation factors (L-PFOS BSAFPerch liver: 22-559) were comparable to elsewhere, and concentrations of PFAA precursors and long chained PFAA in biota were positively correlated to the ratio of carbon isotopes (13C/12C), indicating positive correlations to dietary intake of benthic organisms. The sum fluorine from targeted analyses accounted for 54% of the extractable organic fluorine in sediment, and 9-108% in biota. This, and high trophic magnification factors (TMF, 3.7-9.3 for L-PFOS), suggests that hydrophobic precursors in sediments undergo transformation and are a main source of PFAA accumulation in top predator fish. Due to the combination of water exchange and dilution, transformation of larger hydrophobic precursors in sediments can be a source to PFAA, some of which are normally associated with uptake from water.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Perches , Water Pollutants, Chemical , Alkanesulfonic Acids/analysis , Animals , Biota , Environmental Monitoring , Fluorocarbons/analysis , Geologic Sediments , Lakes , Water Pollutants, Chemical/analysis
5.
Environ Pollut ; 273: 116259, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33450507

ABSTRACT

The entirety of the sediment bed in lake Tyrifjorden, Norway, is contaminated by per- and polyfluoroalkyl substances (PFAS). A factory producing paper products and a fire station were investigated as possible sources. Fire station emissions were dominated by the eight carbon perfluoroalkyl sulfonic acid (PFSA), perfluorooctanesulfonic acid (PFOS), from aqueous film forming foams. Factory emissions contained PFOS, PFOS precursors (preFOS and SAmPAP), long chained fluorotelomer sulfonates (FTS), and perfluoroalkyl carboxylic acids (PFCA). Concentrations and profiles in sediments and biota indicated that emissions originating from the factory were the main source of pollution in the lake, while no clear indication of fire station emissions was found. Ratios of linear-to branched-PFOS increased with distance from the factory, indicating that isomer profiles can be used to trace a point source. A dated sediment core contained higher concentrations in older sediments and indicated that two different PFAS products have been used at the factory, referred to here as Scotchban and FTS mixture. Modelling, based on the sediment concentrations, indicated that 42-189 tons Scotchban, and 2.4-15.6 tons FTS mixture, were emitted. Production of paper products may be a major PFAS point source, that has generally been overlooked. It is hypothesized that paper fibres released from such facilities are important vectors for PFAS transport in the aquatic environment.

6.
Environ Sci Technol ; 53(18): 10951-10960, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31353899

ABSTRACT

The use of aqueous film-forming foams (AFFFs) has resulted in hot spots polluted with poly- and perfluorinated alkyl substances (PFASs). The phase out of long-chained perfluoroalkyl acids (PFAAs) from AFFFs resulted in the necessity for alternatives, and short-chained PFAAs and fluorotelomer-based surfactants have been used. Here, the distribution of PFAS contamination in the marine environment surrounding a military site in Norway was investigated. Up to 30 PFASs were analyzed in storm, leachate, and fjord water; marine sediments; marine invertebrates (snails, green shore crab, great spider crab, and edible crab); and teleost fish (Atlantic cod, European place, and Lemon sole). Perfluorooctanesulfonic acid (PFOS) was the most abundantly detected PFAS. Differences in PFAS accumulation levels were observed among species, likely reflecting different exposure routes among trophic levels and different capabilities for depuration and/or enzymatic degradation. In agreement with previous literature, almost no 6:2 fluorotelomer sulfonate (6:2 FTS) was detected in teleost fish. However, this study is one of the first to report considerable concentrations of 6:2 FTS in marine invertebrates, suggesting bioaccumulation. Biota monitoring and risk assessments of sites contaminated with fluorotelomer sulfonates (FTSs) and related compounds should not be limited to fish, but should also include invertebrates.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonates , Animals , Aquatic Organisms , Environmental Monitoring , Norway , Water
7.
Aquat Toxicol ; 173: 83-93, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26851571

ABSTRACT

In the present study, the developmental (including fertility) and endocrine-disruptive effects in relation to chemical burden in male and female Nile crocodiles (Crocodylus niloticus), from a commercial crocodile farm in the Brits district, South Africa, exposed to various anthropogenic aquatic contaminants from the natural environment was investigated. Hepatic transcript levels for vitellogenin (Vtg), zona pellucida (ZP) and ERα (also in gonads) were analyzed using real-time PCR. Plasma estradiol-17ß (E2), testosterone (T) and 11-ketotestosterone (11-KT) were analyzed using enzyme immunoassay. Gonadal aromatase and hepatic testosterone metabolism (6ß-hydroxylase (6ß-OHase)) were analyzed using biochemical methods. Overall, there is high and abnormal number (%) of infertile and banded eggs during the studied reproductive seasons, showing up to 57 and 34% of infertile eggs in the 2009/2010 and 2013/2014 seasons, respectively. In addition, the percentage of banded eggs ranged between 10 and 19% during the period of 2009-2014 seasons. While hepatic ERα, Vtg, ZP mRNA and testosterone 6ß-OHase, were equally expressed in female and male crocodiles, gonadal ERα mRNA and aromatase activity were significantly higher in females compared to male crocodiles. On the other hand, plasma T and 11-KT levels were significantly higher in males, compared to female crocodiles. Principal component analysis (PCA) produced significant grouping that revealed correlative relationships between reproductive/endocrine-disruptive variables and liver contaminant burden, that further relates to measured contaminants in the natural environment. The overall results suggest that these captive pre-slaughter farm crocodiles exhibited responses to anthropogenic aquatic contaminants with potentially relevant consequences on key reproductive and endocrine pathways and these responses may be established as relevant species endocrine disruptor biomarkers of exposure and effects in this threatened species.


Subject(s)
Alligators and Crocodiles/physiology , Environmental Exposure , Gonads/drug effects , Growth and Development/drug effects , Rivers/chemistry , Water Pollutants, Chemical/toxicity , Alligators and Crocodiles/growth & development , Animals , Endocrine Disruptors/toxicity , Female , Male , Reproduction/drug effects , South Africa , Steroids/blood , Vitellogenins/blood
8.
PLoS One ; 10(6): e0130002, 2015.
Article in English | MEDLINE | ID: mdl-26086370

ABSTRACT

In the present study, the biotransformation and oxidative stress responses in relation to chemical burden in the liver of male and female Nile crocodiles--Crocodylus niloticus--from a commercial crocodile farm passively exposed to various anthropogenic aquatic pollutants was investigated. In general, the data showed that male crocodiles consistently produced higher biotransformation and oxidative stress responses compared to females. Relationships between these responses and concentrations of aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) were also observed. Specifically, the catalytic assays for EROD and BROD (not PROD and MROD) showed sex-differences between male and female crocodiles and paralleled immunochemically determined CYP1A and CYP3A protein levels; the relatively similar levels of PAHs in both sexes suggest an estrogen-mediated reduction of this pathway in females. The antioxidant system exhibited higher levels in male crocodiles with slight or significant higher values for catalase (CAT), glutathione reductase (GR), glutathione peroxidases-H2O2 (GPx-H2O2), glutathione peroxidases-Cu (GPx-Cu), total antioxidant capacity towards peroxyl radicals (TOSC-ROO) and hydroxyl radicals (TOSC-HO), total glutathione (GSH) and malondialdehyde (MDA). On the other hand, the activities of acyl-CoA oxidase (AOX) and glutathione S-transferases (GST) were significantly higher in females. Principal component analysis (PCA) produced significant groupings that revealed correlative relationships (both positive and negative) between biotransformation/oxidative stress variables and liver PAHs and aliphatic hydrocarbon burden. The overall results suggest that these captive pre-slaughter crocodiles exhibited adverse exposure responses to anthropogenic aquatic contaminants with potentially relevant effects on key cellular pathways, and these responses may be established as relevant species biomarkers of exposure and effects in this endangered species.


Subject(s)
Alligators and Crocodiles/metabolism , Environmental Pollutants/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Animals , Biotransformation , Catalase/metabolism , Cytochrome P-450 Enzyme System/metabolism , Female , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Inactivation, Metabolic , Liver/enzymology , Male , Oxidative Stress , Reptilian Proteins/metabolism , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL
...