Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 190: 108844, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38941943

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) receive global attention due to their adverse effects on human health and the environment. Fish consumption is a major source of human PFAS exposure. The aim of this work was to address the lack of harmonization within legislations (in the EU and the USA) and highlight the level of PFAS in fish exposed to pollution from diffuse sources in the context of current safety thresholds. A non-exhaustive literature review was carried out to obtain PFAS concentrations in wild fish from the Norwegian mainland, Svalbard, the Netherlands, the USA, as well as sea regions (North Sea, English Channel, Atlantic Ocean), and farmed fish on the Dutch market. Median sum wet weight concentrations of PFOA, PFNA, PFHxS, and PFOS ranged between 0.1 µg kg-1 (farmed fish) and 22 µg kg-1 (Netherlands eel). Most concentrations fell below the EU environmental quality standard (EQSbiota) for PFOS (9.1 µg kg-1) and would not be defined as polluted in the EU. However, using recent tolerable intake or reference dose values in the EU and the USA revealed that even limited fish consumption would lead to exceedance of these thresholds - possibly posing a challenge for risk communication.

2.
Environ Pollut ; 280: 116935, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33773302

ABSTRACT

POLY: and perfluorinated alkyl substances (PFASs) are ubiquitously detected all around the world. Herein, for the first time, concentrations of 16 selected legacy and emerging PFASs are reported for sediment and edible fish collected from the Saudi Arabian Red Sea. Mean concentrations varied from 0.57 to 2.6 µg kg-1 dry weight (dw) in sediment, 3.89-7.63 µg kg-1 dw in fish muscle, and 17.9-58.5 µg kg-1 dw in fish liver. Wastewater treatment plant effluents represented the main source of these compounds and contributed to the exposure of PFAS to biota. Perfluorooctane sulfonate (PFOS) was the most abundant compound in sediment and fish tissues analysed, comprising between 42 and 99% of the ∑16PFAS. The short chain perfluorobutanoate (PFBA) was the second most dominant compound in sediment and was detected at a maximum concentration of 0.64 µg kg-1 dw. PFAS levels and patterns differed between tissues of investigated fish species. Across all fish species, ∑16PFAS concentrations in liver were significantly higher than in muscle by a factor ranging from 3 to 7 depending on fish species and size. The PFOS replacements fluorotelomer sulfonate (6:2 FTS) and perfluorobutane sulfonate (PFBS) exhibited a bioaccumulation potential in several fish species and 6:2 FTS, was detected at a maximum concentration of 7.1 ± 3.3 µg kg-1 dw in a doublespotted queenfish (Scomberoides lysan) liver. PFBS was detected at a maximum concentration of 2.65 µg kg-1 dw in strong spine silver-biddy (Gerres longirostris) liver. The calculated dietary intake of PFOS, perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorohexane sulfonic acid (PFHxS) exceeded the safety threshold established by the European Food Safety Authority (EFSA) in 2020 in doublespotted queenfish muscle, indicating a potential health risk to humans consuming this fish in Jeddah, Saudi Arabia.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids/analysis , Animals , Fluorocarbons/analysis , Humans , Indian Ocean , Saudi Arabia , Seafood , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...