Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMJ Mil Health ; 169(4): 364-369, 2023 Aug.
Article in English | MEDLINE | ID: mdl-34035162

ABSTRACT

'Primary' blast injuries (PBIs) are caused by direct blast wave interaction with the human body, particularly affecting air-containing organs. With continued experimental focus on PBI mechanisms, recently on blast traumatic brain injury, meaningful test outcomes rely on appropriate simulated conditions. Selected PBI predictive criteria (grouped into those affecting the auditory system, pulmonary injuries and brain trauma) are combined and plotted to provide rationale for generating clinically relevant loading conditions. Using blast engineering theory, explosion characteristics including blast wave parameters and fireball dimensions were calculated for a range of charge masses assuming hemispherical surface detonations and compared with PBI criteria. While many experimental loading conditions are achievable, this analysis demonstrated limits that should be observed to ensure loading is clinically relevant, realistic and practical. For PBI outcomes sensitive only to blast overpressure, blast scaled distance was demonstrated to be a useful parameter for guiding experimental design as it permits flexibility for different experimental set-ups. This analysis revealed that blast waves should correspond to blast scaled distances of 1.75

Subject(s)
Blast Injuries , Brain Injuries, Traumatic , Humans , Explosions
2.
Med Eng Phys ; 93: 83-92, 2021 07.
Article in English | MEDLINE | ID: mdl-34154779

ABSTRACT

Blast injuries remain a serious threat to defence and civilian populations around the world. 'Primary' blast injuries (PBIs) are caused by direct blast wave interaction with the human body, particularly affecting air-containing organs. Work to define blast loading conditions for injury research has received relatively little attention, though with a continued experimental focus on PBIs and idealised explosion assumptions, meaningful test outcomes and subsequent clinical applications, rely on appropriate simulated conditions. This paper critically evaluates and combines existing PBI criteria (grouped into those affecting the auditory system, pulmonary injuries and brain trauma) as a function of idealised blast wave parameters. For clinical blast injury researchers, analysis of the multi-injury criteria indicates zones of appropriate loading conditions for human-scale test items and demonstrates the importance of simulating blast conditions that are both realistic and relevant to the injury type. For certain explosive scenarios, spatial interpretation of the 'zones of relevance' could support emergency response and hazard preparedness by informing triage, patient management and resource allocation, thus leading to improved health outcomes. This work will prove useful to clinical blast injury researchers, blast protection engineers and clinical practitioners involved in the triage, diagnosis, and treatment of PBIs.


Subject(s)
Blast Injuries , Explosive Agents , Blast Injuries/diagnosis , Consensus , Explosions , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...