Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(24): 6272-6278, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38856103

ABSTRACT

Recently developed homonuclear transverse mixing optimal control pulses (hTROP) revealed an elegant way to enhance the detected signal in multidimensional magic-angle spinning (MAS) nuclear magnetic resonance experiments. Inspired by their work, we present two homonuclear simplified preservation of equivalent pathways spectroscopy (hSPEPS) sequences for recoupling CA-CO and CA-CB dipolar couplings under fast and ultrafast MAS rates, theoretically enabling a √2 improvement in sensitivity for each indirect dimension. The efficiencies of hSPEPS are evaluated for non-deuterated samples of influenza A M2 and bacterial rhomboid protease GlpG under two different external magnetic fields (600 and 1200 MHz) and MAS rates (55 and 100 kHz). Three-dimensional (H)CA(CO)NH, (H)CO(CA)NH, and (H)CB(CA)NH spectra demonstrate the high robustness of hSPEPS elements to excite carbon-carbon correlations, especially in the (H)CB(CA)NH spectrum, where hSPEPS outperforms the J-based sequence by a factor of, on average, 2.85.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Endopeptidases/metabolism , Endopeptidases/chemistry , Viroporin Proteins , Viral Matrix Proteins
2.
Methods Mol Biol ; 2796: 23-34, 2024.
Article in English | MEDLINE | ID: mdl-38856893

ABSTRACT

Solid-state NMR allows for the study of membrane proteins under physiological conditions. Here we describe a method for detection of bound ions in the selectivity filter of ion channels using solid-state NMR. This method employs standard 1H-detected solid-state NMR setup and experiment types, which is enabled by using 15N-labelled ammonium ions to mimic potassium ions.


Subject(s)
Ammonium Compounds , Ion Channels , Nitrogen Isotopes , Nitrogen Isotopes/analysis , Ammonium Compounds/chemistry , Ammonium Compounds/analysis , Ion Channels/metabolism , Ion Channels/chemistry , Ions/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Magnetic Resonance Spectroscopy/methods
3.
Angew Chem Int Ed Engl ; 62(47): e202309069, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37733579

ABSTRACT

Viroporins are small ion channels in membranes of enveloped viruses that play key roles during viral life cycles. To use viroporins as drug targets against viral infection requires in-depth mechanistic understanding and, with that, methods that enable investigations under in situ conditions. Here, we apply surface-enhanced infrared absorption (SEIRA) spectroscopy to Influenza A M2 reconstituted within a solid-supported membrane, to shed light on the mechanics of its viroporin function. M2 is a paradigm of pH-activated proton channels and controls the proton flux into the viral interior during viral infection. We use SEIRA to track the large-scale reorientation of M2's transmembrane α-helices in situ during pH-activated channel opening. We quantify this event as a helical tilt from 26° to 40° by correlating the experimental results with solid-state nuclear magnetic resonance-informed computational spectroscopy. This mechanical motion is impeded upon addition of the inhibitor rimantadine, giving a direct spectroscopic marker to test antiviral activity. The presented approach provides a spectroscopic tool to quantify large-scale structural changes and to track the function and inhibition of the growing number of viroporins from pathogenic viruses in future studies.


Subject(s)
Influenza, Human , Humans , Protons , Viral Matrix Proteins/chemistry , Viroporin Proteins , Magnetic Resonance Spectroscopy
4.
Sci Adv ; 9(29): eadh3858, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37467320

ABSTRACT

Rhomboid proteases hydrolyze substrate helices within the lipid bilayer to release soluble domains from the membrane. Here, we investigate the mechanism of activity regulation for this unique but wide-spread protein family. In the model rhomboid GlpG, a lateral gate formed by transmembrane helices TM2 and TM5 was previously proposed to allow access of the hydrophobic substrate to the shielded hydrophilic active site. In our study, we modified the gate region and either immobilized the gate by introducing a maleimide-maleimide (M2M) crosslink or weakened the TM2/TM5 interaction network through mutations. We used solid-state nuclear magnetic resonance (NMR), molecular dynamics (MD) simulations, and molecular docking to investigate the resulting effects on structure and dynamics on the atomic level. We find that variants with increased dynamics at TM5 also exhibit enhanced activity, whereas introduction of a crosslink close to the active site strongly reduces activity. Our study therefore establishes a strong link between the opening dynamics of the lateral gate in rhomboid proteases and their enzymatic activity.


Subject(s)
Escherichia coli Proteins , Peptide Hydrolases , Peptide Hydrolases/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Molecular Docking Simulation , Membrane Proteins/metabolism , Endopeptidases/genetics , Endopeptidases/metabolism , DNA-Binding Proteins/metabolism
5.
ACS Phys Chem Au ; 3(2): 199-206, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36968444

ABSTRACT

Protein dynamics are an intrinsically important factor when considering a protein's biological function. Understanding these motions is often limited through the use of static structure determination methods, namely, X-ray crystallography and cryo-EM. Molecular simulations have allowed for the prediction of global and local motions of proteins from these static structures. Nevertheless, determining local dynamics at residue-specific resolution through direct measurement remains crucial. Solid-state nuclear magnetic resonance (NMR) is a powerful tool for studying dynamics in rigid or membrane-bound biomolecules without prior structural knowledge with the help of relaxation parameters such as T 1 and T 1ρ. However, these provide only a combined result of amplitude and correlation times in the nanosecond-millisecond frequency range. Thus, direct and independent determination of the amplitude of motions might considerably improve the accuracy of dynamics studies. In an ideal situation, the use of cross-polarization would be the optimal method for measuring the dipolar couplings between chemically bound heterologous nuclei. This would unambiguously provide the amplitude of motion per residue. In practice, however, the inhomogeneity of the applied radio-frequency fields across the sample leads to significant errors. Here, we present a novel method to eliminate this issue through including the radio-frequency distribution map in the analysis. This allows for direct and accurate measurement of residue-specific amplitudes of motion. Our approach has been applied to the cytoskeletal protein BacA in filamentous form, as well as to the intramembrane protease GlpG in lipid bilayers.

6.
Front Mol Biosci ; 9: 905306, 2022.
Article in English | MEDLINE | ID: mdl-35836929

ABSTRACT

Optogenetics in the conventional sense, i.e. the use of engineered proteins that gain their light sensitivity from naturally abundant chromophores, represents an exciting means to trigger and control biological activity by light. As an alternate approach, photopharmacology controls biological activity with the help of synthetic photoswitches. Here, we used an azobenzene-derived lipid analogue to optically activate the transmembrane mechanosensitive channel MscL which responds to changes in the lateral pressure of the lipid bilayer. In this work, MscL has been reconstituted in nanodiscs, which provide a native-like environment to the protein and a physical constraint to membrane expansion. We characterized this photomechanical system by FTIR spectroscopy and assigned the vibrational bands of the light-induced FTIR difference spectra of the trans and cis states of the azobenzene photolipid by DFT calculations. Differences in the amide I range indicated reversible conformational changes in MscL as a direct consequence of light switching. With the mediation of nanodiscs, we inserted the transmembrane protein in a free standing photoswitchable lipid bilayer, where electrophysiological recordings confirmed that the ion channel could be set to one of its sub-conducting states upon light illumination. In conclusion, a novel approach is presented to photoactivate and control cellular processes as complex and intricate as gravitropism and turgor sensing in plants, contractility of the heart, as well as sensing pain, hearing, and touch in animals.

7.
J Am Chem Soc ; 144(9): 4147-4157, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35200002

ABSTRACT

The flow of ions across cell membranes facilitated by ion channels is an important function for all living cells. Despite the huge amount of structural data provided by crystallography, elucidating the exact interactions between the selectivity filter atoms and bound ions is challenging. Here, we detect bound 15N-labeled ammonium ions as a mimic for potassium ions in ion channels using solid-state NMR under near-native conditions. The non-selective ion channel NaK showed two ammonium peaks corresponding to its two ion binding sites, while its potassium-selective mutant NaK2K that has a signature potassium-selective selectivity filter with four ion binding sites gave rise to four ammonium peaks. Ions bound in specific ion binding sites were identified based on magnetization transfer between the ions and carbon atoms in the selectivity filters. Magnetization transfer between bound ions and water molecules revealed that only one out of four ions in the selectivity filter of NaK2K is in close contact with water, which is in agreement with the direct knock-on ion conduction mechanism where ions are conducted through the channel by means of direct interactions without water molecules in between. Interestingly, the potassium-selective ion channels investigated here (NaK2K and, additionally, KcsA-Kv1.3) showed remarkably different chemical shifts for their bound ions, despite having identical amino acid sequences and crystal structures of their selectivity filters. Molecular dynamics simulations show similar ion binding and conduction behavior between ammonium and potassium ions and identify the origin of the differences between the investigated potassium channels.


Subject(s)
Ammonium Compounds , Potassium Channels , Ammonium Compounds/metabolism , Bacterial Proteins/chemistry , Ions/metabolism , Molecular Dynamics Simulation , Potassium/metabolism , Potassium Channels/chemistry , Protein Conformation , Water/metabolism
8.
J Biol Chem ; 298(1): 101472, 2022 01.
Article in English | MEDLINE | ID: mdl-34890646

ABSTRACT

Technological advances in cryo-EM in recent years have given rise to detailed atomic structures of bacteriophage tail tubes-a class of filamentous protein assemblies that could previously only be studied on the atomic scale in either their monomeric form or when packed within a crystal lattice. These hollow elongated protein structures, present in most bacteriophages of the order Caudovirales, connect the DNA-containing capsid with a receptor function at the distal end of the tail and consist of helical and polymerized major tail proteins. However, the resolution of cryo-EM data for these systems differs enormously between different tail tube types, partly inhibiting the building of high-fidelity models and barring a combination with further structural biology methods. Here, we review the structural biology efforts within this field and highlight the role of integrative structural biology approaches that have proved successful for some of these systems. Finally, we summarize the structural elements of major tail proteins and conceptualize how different amounts of tail tube flexibility confer heterogeneity within cryo-EM maps and, thus, limit high-resolution reconstructions.


Subject(s)
Bacteriophages , Capsid Proteins , Caudovirales , Bacteriophages/chemistry , Bacteriophages/metabolism , Capsid/chemistry , Capsid/metabolism , Capsid Proteins/metabolism , Caudovirales/chemistry , Caudovirales/metabolism , Cryoelectron Microscopy , Protein Conformation , Virion/metabolism
9.
Front Physiol ; 12: 792958, 2021.
Article in English | MEDLINE | ID: mdl-34950061

ABSTRACT

Ion channels allow for the passage of ions across biological membranes, which is essential for the functioning of a cell. In pore loop channels the selectivity filter (SF) is a conserved sequence that forms a constriction with multiple ion binding sites. It is becoming increasingly clear that there are several conformations and dynamic states of the SF in cation channels. Here we outline specific modes of structural plasticity observed in the SFs of various pore loop channels: disorder, asymmetry, and collapse. We summarize the multiple atomic structures with varying SF conformations as well as asymmetric and more dynamic states that were discovered recently using structural biology, spectroscopic, and computational methods. Overall, we discuss here that structural plasticity within the SF is a key molecular determinant of ion channel gating behavior.

10.
Chem Sci ; 12(38): 12754-12762, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34703562

ABSTRACT

Intramembrane proteolysis plays a fundamental role in many biological and pathological processes. Intramembrane proteases thus represent promising pharmacological targets, but few selective inhibitors have been identified. This is in contrast to their soluble counterparts, which are inhibited by many common drugs, and is in part explained by the inherent difficulty to characterize the binding of drug-like molecules to membrane proteins at atomic resolution. Here, we investigated the binding of two different inhibitors to the bacterial rhomboid protease GlpG, an intramembrane protease characterized by a Ser-His catalytic dyad, using solid-state NMR spectroscopy. H/D exchange of deuterated GlpG can reveal the binding position while chemical shift perturbations additionally indicate the allosteric effects of ligand binding. Finally, we determined the exact binding mode of a rhomboid protease-inhibitor using a combination of solid-state NMR and molecular dynamics simulations. We believe this approach can be widely adopted to study the structure and binding of other poorly characterized membrane protein-ligand complexes in a native-like environment and under physiological conditions.

11.
J Mol Biol ; 433(15): 167091, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34090923

ABSTRACT

Ion conduction is an essential function for electrical activity in all organisms. The non-selective ion channel NaK was previously shown to adopt two stable conformations of the selectivity filter. Here, we present solid-state NMR measurements of NaK demonstrating a population shift between these conformations induced by changing the ions in the sample while the overall structure of NaK is not affected. We show that two K+-selective mutants (NaK2K and NaK2K-Y66F) suffer a complete loss of selectivity filter stability under Na+ conditions, but do not collapse into a defined structure. Widespread chemical shift perturbations are seen between the Na+ and K+ states of the K+-selective mutants in the region of the pore helix indicating structural changes. We conclude that the stronger link between the selectivity filter and the pore helix in the K+-selective mutants, compared to the non-selective wild-type NaK channel, reduces the ion-dependent conformational flexibility of the selectivity filter.


Subject(s)
Mutation , Potassium Channels, Sodium-Activated/chemistry , Potassium Channels, Sodium-Activated/metabolism , Sodium/metabolism , Hydrogen Bonding , Magnetic Resonance Imaging , Models, Molecular , Potassium Channels, Sodium-Activated/genetics , Protein Conformation , Protein Stability
12.
IUCrJ ; 8(Pt 3): 421-430, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33953928

ABSTRACT

The sodium potassium ion channel (NaK) is a nonselective ion channel that conducts both sodium and potassium across the cellular membrane. A new crystallographic structure of NaK reveals conformational differences in the residues that make up the selectivity filter between the four subunits that form the ion channel and the inner helix of the ion channel. The crystallographic structure also identifies a side-entry, ion-conduction pathway for Na+ permeation that is unique to NaK. NMR studies and molecular dynamics simulations confirmed the dynamical nature of the top part of the selectivity filter and the inner helix in NaK as also observed in the crystal structure. Taken together, these results indicate that the structural plasticity of the selectivity filter combined with the dynamics of the inner helix of NaK are vital for the efficient conduction of different ions through the non-selective ion channel of NaK.

13.
Eur Biophys J ; 50(2): 159-172, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33782728

ABSTRACT

The voltage-dependent anion channel (VDAC) is one of the most highly abundant proteins found in the outer mitochondrial membrane, and was one of the earliest discovered. Here we review progress in understanding VDAC function with a focus on its structure, discussing various models proposed for voltage gating as well as potential drug targets to modulate the channel's function. In addition, we explore the sensitivity of VDAC structure to variations in the membrane environment, comparing DMPC-only, DMPC with cholesterol, and near-native lipid compositions, and use magic-angle spinning NMR spectroscopy to locate cholesterol on the outside of the ß-barrel. We find that the VDAC protein structure remains unchanged in different membrane compositions, including conditions with cholesterol.


Subject(s)
Ion Channel Gating , Voltage-Dependent Anion Channels/chemistry , Voltage-Dependent Anion Channels/metabolism , Molecular Dynamics Simulation
14.
Nat Commun ; 11(1): 5759, 2020 11 13.
Article in English | MEDLINE | ID: mdl-33188213

ABSTRACT

Bacteriophage SPP1 is a double-stranded DNA virus of the Siphoviridae family that infects the bacterium Bacillus subtilis. This family of phages features a long, flexible, non-contractile tail that has been difficult to characterize structurally. Here, we present the atomic structure of the tail tube of phage SPP1. Our hybrid structure is based on the integration of structural restraints from solid-state nuclear magnetic resonance (NMR) and a density map from cryo-EM. We show that the tail tube protein gp17.1 organizes into hexameric rings that are stacked by flexible linker domains and, thus, form a hollow flexible tube with a negatively charged lumen suitable for the transport of DNA. Additionally, we assess the dynamics of the system by combining relaxation measurements with variances in density maps.


Subject(s)
Siphoviridae/chemistry , Amino Acid Sequence , Cryoelectron Microscopy , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Structure, Secondary , Siphoviridae/ultrastructure , Thermodynamics , Viral Proteins/chemistry , Viral Proteins/ultrastructure
15.
Biochim Biophys Acta Biomembr ; 1862(2): 183114, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31666178

ABSTRACT

Energy-coupling factor (ECF) transporters for uptake of vitamins and transition-metal ions into prokaryotic cells share a common architecture consisting of a substrate-specific integral membrane protein (S), a transmembrane coupling protein (T) and two cytoplasmic ATP-binding-cassette-family ATPases. S components rotate within the membrane to expose their binding pockets alternately to the exterior and the cytoplasm. In contrast to vitamin transporters, metal-specific systems rely on additional proteins with essential but poorly understood functions. CbiN, a membrane protein composed of two transmembrane helices tethered by an extracytoplasmic loop of 37 amino-acid residues represents the auxiliary component that temporarily interacts with the CbiMQO2 Co2+ transporter. CbiN was previously shown to induce significant Co2+ transport activity in the absence of CbiQO2 in cells producing the S component CbiM plus CbiN or a Cbi(MN) fusion. Here we analyzed the mode of interaction between the two protein domains. Any deletion in the CbiN loop abolished transport activity. In silico predicted protein-protein contacts between segments of the CbiN loop and loops in CbiM were confirmed by cysteine-scanning mutagenesis and crosslinking. Likewise, an ordered structure of the CbiN loop was observed by electron paramagnetic resonance analysis after site-directed spin labeling. The N-terminal loop of CbiM containing three of four metal ligands was partially immobilized in wild-type Cbi(MN) but completely immobile in inactive variants with CbiN loop deletions. Decreased dynamics of the inactive form was also detected by solid-state nuclear magnetic resonance of isotope-labeled protein in proteoliposomes. In conclusion, CbiM-CbiN loop-loop interactions facilitate metal insertion into the binding pocket.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Cation Transport Proteins/metabolism , Cobalt/metabolism , Escherichia coli Proteins/metabolism , ATP-Binding Cassette Transporters/chemistry , Binding Sites , Cation Transport Proteins/chemistry , Escherichia coli Proteins/chemistry , Protein Binding
16.
Magn Reson Chem ; 58(5): 445-465, 2020 05.
Article in English | MEDLINE | ID: mdl-31691361

ABSTRACT

Solid-state NMR (ssNMR) spectroscopy has evolved into a powerful method to obtain structural information and to study the dynamics of proteins at atomic resolution and under physiological conditions. The method is especially well suited to investigate insoluble and noncrystalline proteins that cannot be investigated easily by X-ray crystallography or solution NMR. To allow for detailed analysis of ssNMR data, the assignment of resonances to the protein atoms is essential. For this purpose, a set of three-dimensional (3D) spectra needs to be acquired. Band-selective homo-nuclear cross-polarization (BSH-CP) is an effective method for magnetization transfer between carbonyl carbon (CO) and alpha carbon (CA) atoms, which is an important transfer step in multidimensional ssNMR experiments. This tutorial describes the detailed procedure for the chemical shift assignment of the backbone atoms of 13 C-15 N-labeled proteins by BSH-CP-based 13 C-detected ssNMR experiments. A set of six 3D experiments is used for unambiguous assignment of the protein backbone as well as certain side-chain resonances. The tutorial especially addresses scientists with little experience in the field of ssNMR and provides all the necessary information for protein assignment in an efficient, time-saving approach.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Protein Structure, Tertiary
17.
J Am Chem Soc ; 141(43): 17314-17321, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31603315

ABSTRACT

Rhomboid proteases are intramembrane proteases that hydrolyze substrate peptide bonds within the lipid bilayer and are important for a wide range of biological processes. The bacterial intramembrane protease GlpG is one of the model systems for structural investigations of the rhomboid family. Two different models of substrate gating have been proposed, based on crystal structures of GlpG in detergent micelles. Here, we present a detailed investigation of enzymatically active GlpG in a native-like lipid environment using solid-state NMR spectroscopy. Proton-detected experiments confirm the presence of water molecules in the catalytic cavity. A secondary chemical shift analysis indicates a previously unobserved kink in the central part of the gating helix TM5. Dynamics measurements revealed a dynamic hotspot of GlpG at the N-terminal part of TM5 and the adjacent loop L4, indicating that this region is important for gating. In addition, relaxation dispersion experiments suggest that TM5 is in conformational exchange between an open and a closed conformation.


Subject(s)
DNA-Binding Proteins/chemistry , Endopeptidases/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/chemistry , Liposomes/chemistry , Membrane Proteins/chemistry , DNA-Binding Proteins/metabolism , Endopeptidases/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Magnetic Resonance Spectroscopy , Membrane Proteins/metabolism , Models, Molecular , Protein Conformation , Water/chemistry
18.
Sci Adv ; 5(7): eaaw6756, 2019 07.
Article in English | MEDLINE | ID: mdl-31392272

ABSTRACT

Ion conduction through potassium channels is a fundamental process of life. On the basis of crystallographic data, it was originally proposed that potassium ions and water molecules are transported through the selectivity filter in an alternating arrangement, suggesting a "water-mediated" knock-on mechanism. Later on, this view was challenged by results from molecular dynamics simulations that revealed a "direct" knock-on mechanism where ions are in direct contact. Using solid-state nuclear magnetic resonance techniques tailored to characterize the interaction between water molecules and the ion channel, we show here that the selectivity filter of a potassium channel is free of water under physiological conditions. Our results are fully consistent with the direct knock-on mechanism of ion conduction but contradict the previously proposed water-mediated knock-on mechanism.


Subject(s)
Ion Channel Gating , Potassium Channels/metabolism , Water/metabolism , Amino Acid Sequence , Cell Membrane Permeability , Diffusion , Potassium Channels/chemistry
19.
J Biomol NMR ; 73(6-7): 281-291, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31028572

ABSTRACT

Uropathogenic Escherichia coli invades and colonizes hosts by attaching to cells using adhesive pili on the bacterial surface. Although many biophysical techniques have been used to study the structure and mechanical properties of pili, many important details are still unknown. Here we use proton-detected solid-state NMR experiments to investigate solvent accessibility and structural dynamics. Deuterium back-exchange at labile sites of the perdeuterated, fully proton back-exchanged pili was conducted to investigate hydrogen/deuterium (H/D) exchange patterns of backbone amide protons in pre-assembled pili. We found distinct H/D exchange patterns in lateral and axial intermolecular interfaces in pili. Amide protons protected from H/D exchange in pili are mainly located in the core region of the monomeric subunit and in the lateral intermolecular interface, whereas the axial intermolecular interface and the exterior region of pili are highly exposed to H/D exchange. Additionally, we performed molecular dynamics simulations of the type 1 pilus rod and estimated the probability of H/D exchange based on hydrogen bond dynamics. The comparison of the experimental observables and simulation data provides insights into stability and mechanical properties of pili.


Subject(s)
Deuterium/chemistry , Fimbriae Proteins/chemistry , Hydrogen/chemistry , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Protons , Algorithms , Protein Conformation
20.
J Struct Biol ; 206(1): 43-48, 2019 04 01.
Article in English | MEDLINE | ID: mdl-29678776

ABSTRACT

Intra-neuronal aggregation of α-synuclein into fibrils is the molecular basis for α-synucleinopathies, such as Parkinson's disease. The atomic structure of human α-synuclein (hAS) fibrils was recently determined by Tuttle et al. using solid-state NMR (ssNMR). The previous study found that hAS fibrils are composed of a single protofilament. Here, we have investigated the structure of mouse α-synuclein (mAS) fibrils by STEM and isotope-dilution ssNMR experiments. We found that in contrast to hAS, mAS fibrils consist of two or even three protofilaments which are connected by rather weak interactions in between them. Although the number of protofilaments appears to be different between hAS and mAS, we found that they have a remarkably similar secondary structure and protofilament 3D structure as judged by secondary chemical shifts and intra-molecular distance restraints. We conclude that the two mutant sites between hAS and mAS (positions 53 and 87) in the fibril core region are crucial for determining the quaternary structure of α-synuclein fibrils.


Subject(s)
Amyloid/chemistry , Magnetic Resonance Spectroscopy/methods , Microscopy, Electron, Scanning Transmission/methods , Molecular Conformation , alpha-Synuclein/chemistry , Amyloid/genetics , Amyloid/metabolism , Animals , Binding Sites/genetics , Carbon Isotopes/chemistry , Carbon Isotopes/metabolism , Humans , Hydrogen/chemistry , Hydrogen/metabolism , Mice , Models, Molecular , Mutation , Nitrogen Isotopes/chemistry , Nitrogen Isotopes/metabolism , Protein Structure, Secondary , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...