Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 28(31): e202200584, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35313382

ABSTRACT

We have discovered a dual (i. e., soft and hard) Lewis acidity of alumina that enables rapid one-pot π-extension through the activation of terminal alkynes followed by C-F activation. The tandem reaction introduces an acenaphthene fragment - an essential moiety of geodesic polyarenes. This reaction provides quick access to elusive non-alternant polyarenes such as π-extended buckybowls and helicenes through three-point annulation of the 1-(2-ethynyl-6-fluorophenyl)naphthalene moiety. The versatility of the developed method was demonstrated by the synthesis of unprecedented structural fragments of elusive geodesic graphene nanoribbons.

2.
J Agric Food Chem ; 68(9): 2747-2756, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32028770

ABSTRACT

The induction period (IP) of ethyl linoleate stressed at 60 °C was monitored via the formation of hydroperoxides. The addition of lycopene (1% w/w) increased the IP from 7.0 to 10.0 h to prove the strong antioxidative potential in contrast to ß-carotene with pro-oxidative effects (IP: 6.0 h), both showing strong scavenging activity under fast degradation. When peroxidation was induced by singlet oxygen, both carotenoids effectively inhibited the formation of hydroperoxides, with quenching activity only observed at low singlet oxygen concentrations, while scavenging still dominated. Thus, carotenoids did not interact with the introduced singlet oxygen but rather with the radical intermediates of fat oxidation. These experiments were then transferred to lecithin-based micelles more related to biological systems, where singlet oxygen was generated in the outer aqueous phase. Lycopene and ß-carotene delayed or inhibited lipid peroxidation depending on concentration. In this setup, ß-carotene showed exclusively quenching activity, while lycopene was additionally degraded to about 70%.


Subject(s)
Linoleic Acids/chemistry , Lycopene/chemistry , beta Carotene/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Kinetics , Lecithins/chemistry , Linoleic Acids/pharmacology , Lipid Peroxidation/drug effects , Models, Chemical , Oxidation-Reduction , Singlet Oxygen/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...