Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 10(1): 10392, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32587273

ABSTRACT

We find that a five-phase (substrate, mixed native oxide and roughness interface layer, metal oxide thin film layer, surface ligand layer, ambient) model with two-dynamic (metal oxide thin film layer thickness and surface ligand layer void fraction) parameters (dynamic dual box model) is sufficient to explain in-situ spectroscopic ellipsometry data measured within and across multiple cycles during plasma-enhanced atomic layer deposition of metal oxide thin films. We demonstrate our dynamic dual box model for analysis of in-situ spectroscopic ellipsometry data in the photon energy range of 0.7-3.4 eV measured with time resolution of few seconds over large numbers of cycles during the growth of titanium oxide (TiO2) and tungsten oxide (WO3) thin films, as examples. We observe cyclic surface roughening with fast kinetics and subsequent roughness reduction with slow kinetics, upon cyclic exposure to precursor materials, leading to oscillations of the metal thin film thickness with small but positive growth per cycle. We explain the cyclic surface roughening by precursor-surface interactions leading to defect creation, and subsequent surface restructuring. Atomic force microscopic images before and after growth, x-ray photoelectron spectroscopy, and x-ray diffraction investigations confirm structural and chemical properties of our thin films. Our proposed dynamic dual box model may be generally applicable to monitor and control metal oxide growth in atomic layer deposition, and we include data for SiO2 and Al2O3 as further examples.

3.
J Comput Chem ; 28(7): 1240-51, 2007 May.
Article in English | MEDLINE | ID: mdl-17299835

ABSTRACT

Embedded Ni(x)O(x) clusters (x = 4-12) have been studied by the density-functional method using compensating point charges of variable magnitude to calculate the ionic charge, bulk modulus, and lattice binding energy. The computations were found to be strongly dependent on the value of the surrounding point charge array and an optimum value could be found by choosing the point charge to reproduce the experimentally observed Ni--O lattice parameter. This simple, empirical method yields a good match between computed and experimental data, and even small variation from the optimum point charge value produces significant deviation between computed and measured bulk physical parameters. The optimum point charge value depends on the cluster size, but in all cases is significantly less than +/-2.0, the formal oxidation state typically employed in cluster modeling of NiO bulk and surface properties. The electronic structure calculated with the optimized point charge magnitude is in general agreement with literature photoemission and XPS data and agrees with the presently accepted picture of the valence band as containing charge-transfer insulator characteristics. The orbital population near the Fermi level does not depend on the cluster size and is characterized by hybridized Ni 3d and O 2p orbitals with relative oxygen contribution of about 70%.

4.
J Phys Chem B ; 110(3): 1309-18, 2006 Jan 26.
Article in English | MEDLINE | ID: mdl-16471679

ABSTRACT

Periodically stepped NiO(100) surfaces were prepared and characterized with low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and temperature-programmed desorption (TPD). Two vicinal NiO(100) single-crystal samples were cut, oriented, and polished with regular, repeating monatomic steps in six-atom or seven-atom terrace widths. LEED diffraction patterns showed characteristic spot-splitting that corresponded to the appropriate terrace and step height. The nonstepped and stepped NiO(100) surfaces were exposed to bromobenzene at 130 K first to produce a molecularly adsorbed monolayer species and then, with increased exposure, a multilayer adsorbate. An additional adsorbate species, observed only on the stepped surfaces, was found to desorb at 145 K by two competing pathways. One pathway, which saturates at low coverages, leaves bromine behind on the substrate and results in dehalogenation. The other pathway yields molecular desorption at 145 K, but is only observed in detectable amounts after the dehalogenation pathway is saturated. On both stepped and nonstepped NiO(100) substrates, adsorbed bromine resulting from dehalogenation processes appears as nickel bromide, determined by the Br 3p XPS data.

5.
Langmuir ; 20(26): 11509-16, 2004 Dec 21.
Article in English | MEDLINE | ID: mdl-15595777

ABSTRACT

Finely ground and pretreated iron substrates known as "zerovalent iron" or "Fe0" are used as reductants in the environmental remediation of halogenated hydrocarbons, and the composition of their surfaces significantly affects their reactivity. Samples of unannealed and annealed (heat-treated under H2/N2) zerovalent iron were analyzed using X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). Surface concentration of the iron and of the impurities observed by XPS and AES, carbon, chlorine, sulfur, and oxygen, were measured before and after soaking in trichloroethylene (TCE) and in water saturated with TCE (H2O/TCE) to simulate chlorocarbon remediation conditions. Samples pretreated by annealing at high temperature under H2 contained less iron carbide. The carbide contaminant was evident in both iron and carbon XPS spectra, with binding energies of 709.0 and 283.3 eV for the Fe 2p3/2 and C 1s, respectively. The annealed Fe0 surface also contained more sulfur. The carbide concentration was essentially unchanged by TCE and H2O/TCE exposure, whereas the sulfur decreased in proportion to chlorine adsorption following the dechlorination reaction. While oxygen concentration is initially lower on the annealed substrate surface, it rapidly increased during the model TCE remediative treatment process and thus does not represent a significant effect of the annealing process on surface reactivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...