Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(7): e17698, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37483809

ABSTRACT

Additive Manufacturing (AM) has spread significantly in recent years, with relevant applications in many fields of research and engineering. Thanks to its distinctive production methods, AM enables the creation of parts with complex shapes that cannot be fabricated easily by employing traditional subtractive processes. 3D printing, which involves overlapping material layer by layer until the designed part is completed, shows several advantages in terms of limiting material waste, reducing production phases and postprocessing/heat treatments needs, leading to an additional benefit in terms of environmental sustainability. However, there are still limited available data on the influence of the 3D printing process on the mechanical properties of the materials that are commonly used and additional investigations are strongly demanded. So, the purpose of the present paper is to provide a useful contribution in the field of metal additive manufacturing, reporting the results of an experimental campaign carried out on 17-4 P H stainless steel, produced using selective laser melting technology. The effects of different printing orientations and scanning times on the tensile behaviour, impact strength and microhardness features of the 3D-printed products are investigated. Furthermore, the influence of an annealing heat treatment on the material mechanical performance is evaluated.

2.
Polymers (Basel) ; 15(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36850138

ABSTRACT

Carbon fiber-reinforced plastics (CFRPs) are composite materials that play a significant role in the growth of many industrial fields where high performance and lightness of the structures are required. At the same time, the management at the end of their life has required the development of more and more sustainable and efficient recycling solutions. Considering this, the present research work aims to investigate a mechanical recycling method and the cutting strategies able to machine CFRP components in their entirety, using a common milling machine in a job shop scheme, making a shorter supply chain, and leading to economic and environmental benefits. In detail, laminates obtained by unidirectional carbon fiber prepregs were worked through the peripheral down-milling process, by varying the spindle speed and the feed rate. The recording of the cutting forces enabled the evaluation of features such as the cutting power and the specific cutting energy. Moreover, the chips from the milling process were classified as a function of their dimensions. Finally, specimens made of chips and epoxy resin were characterized under bending conditions, to evaluate the effectiveness of using the chips from CFRP peripheral milling as the polymer's reinforcement and, in addition, to appreciate the goodness of this recycling strategy.

3.
Langmuir ; 34(19): 5646-5654, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29664652

ABSTRACT

When a Newtonian bubble ruptures, the film retraction dynamics is controlled by the interplay of surface, inertial, and viscous forces. In case a viscoelastic liquid is considered, the scenario is enriched by the appearance of a new significant contribution, namely, the elastic force. In this paper, we investigate experimentally the retraction of viscoelastic bubbles inflated at different blowing rates, showing that the amount of elastic energy stored by the liquid film enclosing the bubble depends on the inflation history and in turn affects the velocity of film retraction when the bubble is punctured. Several viscoelastic liquids are considered. We also perform direct numerical simulations to support the experimental findings. Finally, we develop a simple heuristic model able to interpret the physical mechanism underlying the process.

SELECTION OF CITATIONS
SEARCH DETAIL
...