Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J R Soc Interface ; 19(193): 20220226, 2022 08.
Article in English | MEDLINE | ID: mdl-35946165

ABSTRACT

Repeated polygonal patterns are pervasive in natural forms and structures. These patterns provide inherent structural stability while optimizing strength-per-weight and minimizing construction costs. In echinoids (sea urchins), a visible regularity can be found in the endoskeleton, consisting of a lightweight and resistant micro-trabecular meshwork (stereom). This foam-like structure follows an intrinsic geometrical pattern that has never been investigated. This study aims to analyse and describe it by focusing on the boss of tubercles-spine attachment sites subject to strong mechanical stresses-in the common sea urchin Paracentrotus lividus. The boss microstructure was identified as a Voronoi construction characterized by 82% concordance to the computed Voronoi models, a prevalence of hexagonal polygons, and a regularly organized seed distribution. This pattern is interpreted as an evolutionary solution for the construction of the echinoid skeleton using a lightweight microstructural design that optimizes the trabecular arrangement, maximizes the structural strength and minimizes the metabolic costs of secreting calcitic stereom. Hence, this identification is particularly valuable to improve the understanding of the mechanical function of the stereom as well as to effectively model and reconstruct similar structures in view of future applications in biomimetic technologies and designs.


Subject(s)
Paracentrotus , Animals , Skeleton , Spine , Stress, Mechanical
2.
Biomimetics (Basel) ; 7(3)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35892359

ABSTRACT

In biomimetic design, functional systems, principles, and processes observed in nature are used for the development of innovative technical systems. The research on functional features is often carried out without giving importance to the generative mechanism behind them: evolution. To deeply understand and evaluate the meaning of functional morphologies, integrative structures, and processes, it is imperative to not only describe, analyse, and test their behaviour, but also to understand the evolutionary history, constraints, and interactions that led to these features. The discipline of palaeontology and its approach can considerably improve the efficiency of biomimetic transfer by analogy of function; additionally, this discipline, as well as biology, can contribute to the development of new shapes, textures, structures, and functional models for productive and generative processes useful in the improvement of designs. Based on the available literature, the present review aims to exhibit the potential contribution that palaeontology can offer to biomimetic processes, integrating specific methodologies and knowledge in a typical biomimetic design approach, as well as laying the foundation for a biomimetic design inspired by extinct species and evolutionary processes: Paleomimetics. A state of the art, definition, method, and tools are provided, and fossil entities are presented as potential role models for technical transfer solutions.

3.
R Soc Open Sci ; 9(5): 211972, 2022 May.
Article in English | MEDLINE | ID: mdl-35592761

ABSTRACT

In the field of structural engineering, lightweight and resistant shell structures can be designed by efficiently integrating and optimizing form, structure and function to achieve the capability to sustain a variety of loading conditions with a reduced use of resources. Interestingly, a limitless variety of high-performance shell structures can be found in nature. Their study can lead to the acquisition of new functional solutions that can be employed to design innovative bioinspired constructions. In this framework, the present study aimed to illustrate the main results obtained in the mechanical analysis of the echinoid test in the common sea urchin Paracentrotus lividus (Lamarck, 1816) and to employ its principles to design lightweight shell structures. For this purpose, visual survey, photogrammetry, three-dimensional modelling, three-point bending tests and finite-element modelling were used to interpret the mechanical behaviour of the tessellated structure that characterize the echinoid test. The results achieved demonstrated that this structural topology, consisting of rigid plates joined by flexible sutures, allows for a significant reduction of bending moments. This strategy was generalized and applied to design both free-form and form-found shell structures for architecture exhibiting improved structural efficiency.

4.
Biomimetics (Basel) ; 6(4)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34698083

ABSTRACT

Organisms and their features represent a complex system of solutions that can efficiently inspire the development of original and cutting-edge design applications: the related discipline is known as biomimetics. From the smallest to the largest, every species has developed and adapted different working principles based on their relative dimensional realm. In nature, size changes determine remarkable effects in organismal structures, functions, and evolutionary innovations. Similarly, size and scaling rules need to be considered in the biomimetic transfer of solutions to different dimensions, from nature to artefacts. The observation of principles that occur at very small scales, such as for nano- and microstructures, can often be seen and transferred to a macroscopic scale. However, this transfer is not always possible; numerous biological structures lose their functionality when applied to different scale dimensions. Hence, the evaluation of the effects and changes in scaling biological working principles to the final design dimension is crucial for the success of any biomimetic transfer process. This review intends to provide biologists and designers with an overview regarding scale-related principles in organismal design and their application to technical projects regarding mechanics, optics, electricity, and acoustics.

5.
Bioinspir Biomim ; 16(1)2020 11 30.
Article in English | MEDLINE | ID: mdl-32927446

ABSTRACT

The endoskeleton of echinoderms (Deuterostomia: Echinodermata) is of mesodermal origin and consists of cells, organic components, as well as an inorganic mineral matrix. The echinoderm skeleton forms a complex lattice-system, which represents a model structure for naturally inspired engineering in terms of construction, mechanical behaviour and functional design. The sea urchin (Echinodermata: Echinoidea) endoskeleton consists of three main structural components: test, dental apparatus and accessory appendages. Although, all parts of the echinoid skeleton consist of the same basic material, their microstructure displays a great potential in meeting several mechanical needs according to a direct and clear structure-function relationship. This versatility has allowed the echinoid skeleton to adapt to different activities such as structural support, defence, feeding, burrowing and cleaning. Although, constrained by energy and resource efficiency, many of the structures found in the echinoid skeleton are optimized in terms of functional performances. Therefore, these structures can be used as role models for bio-inspired solutions in various industrial sectors such as building constructions, robotics, biomedical and material engineering. The present review provides an overview of previous mechanical and biomimetic research on the echinoid endoskeleton, describing the current state of knowledge and providing a reference for future studies.


Subject(s)
Biomimetics , Echinodermata , Animals , Sea Urchins
SELECTION OF CITATIONS
SEARCH DETAIL
...