Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Virology ; 566: 98-105, 2022 01.
Article in English | MEDLINE | ID: mdl-34896902

ABSTRACT

The innate and acquired immune response induced by a commercial inactivated vaccine against Bovine Herpesvirus-1 (BoHV-1) and protection conferred against the virus were analyzed in cattle. Vaccination induced high levels of BoHV-1 antibodies at 30, 60, and 90 days post-vaccination (dpv). IgG1 and IgG2 isotypes were detected at 90 dpv, as well as virus-neutralizing antibodies. An increase of anti-BoHV-1 IgG1 in nasal swabs was detected 6 days post-challenge in vaccinated animals. After viral challenge, lower virus excretion and lower clinical score were observed in vaccinated as compared to unvaccinated animals, as well as BoHV-1-specific proliferation of lymphocytes and production of IFNγ, TNFα, and IL-4. Downregulation of the expression of endosome Toll-like receptors 8-9 was detected after booster vaccination. This is the first thorough study of the immunity generated by a commercial vaccine against BoHV-1 in cattle.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Herpesvirus 1, Bovine/immunology , Herpesvirus Vaccines/administration & dosage , Immunoglobulin G/biosynthesis , Infectious Bovine Rhinotracheitis/prevention & control , Toll-Like Receptor 8/immunology , Toll-Like Receptor 9/immunology , Adaptive Immunity/drug effects , Animals , Antibodies, Viral , Cattle , Cell Proliferation , Endosomes/immunology , Endosomes/metabolism , Gene Expression , Herpesvirus 1, Bovine/pathogenicity , Immunity, Innate/drug effects , Immunization, Secondary/methods , Infectious Bovine Rhinotracheitis/genetics , Infectious Bovine Rhinotracheitis/immunology , Infectious Bovine Rhinotracheitis/virology , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-4/genetics , Interleukin-4/immunology , Lymphocytes/immunology , Lymphocytes/virology , Male , Nasal Cavity/immunology , Nasal Cavity/virology , Toll-Like Receptor 8/agonists , Toll-Like Receptor 8/genetics , Toll-Like Receptor 9/agonists , Toll-Like Receptor 9/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Vaccination/methods , Vaccines, Inactivated
2.
Mol Pharm ; 18(7): 2540-2555, 2021 07 05.
Article in English | MEDLINE | ID: mdl-34106726

ABSTRACT

Dendritic cells serve as the main immune cells that trigger the immune response. We developed a simple and cost-effective nanovaccine platform based on the α1',2-mannobiose derivative for dendritic cell targeting. In previous work, we have formulated the α1,2-mannobiose-based nanovaccine platform with plasmid DNA and tested it in cattle against BoHV-1 infection. There, we have shown that the dendritic cell targeting using this nanovaccine platform in vivo can boost the immunogenicity, resulting in a long-lasting immunity. In this work, we aim to characterize the α1',2-mannobiose derivative, which is key in the nanovaccine platform. This DC-targeting strategy takes advantage of the specific receptor known as DC-SIGN and exploits its capacity to bind α1,2-mannobiose that is present at terminal ends of oligosaccharides in certain viruses, bacteria, and other pathogens. The oxidative conjugation of α1',2-mannobiose to NH2-PEG2kDa-DSPE allowed us to preserve the chemical structure of the non-reducing mannose of the disaccharide and the OH groups and the stereochemistry of all carbons of the reducing mannose involved in the binding to DC-SIGN. Here, we show specific targeting to DC-SIGN of decorated micelles incubated with the Raji/DC-SIGN cell line and uptake of targeted liposomes that took place in human, bovine, mouse, and teleost fish DCs in vitro, by flow cytometry. Specific targeting was found in all cultures, demonstrating a species-non-specific avidity for this ligand, which opens up the possibility of using this nanoplatform to develop new vaccines for various species, including humans.


Subject(s)
Antigen-Presenting Cells/immunology , Cell Adhesion Molecules/immunology , Dendritic Cells/immunology , Lectins, C-Type/immunology , Lymphoma/immunology , Mannose/chemistry , Receptors, Cell Surface/immunology , Vaccines/immunology , Animals , Cattle , Female , Fishes , Humans , Lymphoma/therapy , Male , Mice , Mice, Inbred BALB C , Species Specificity , Vaccines/administration & dosage
3.
Vaccine ; 39(6): 1007-1017, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33446386

ABSTRACT

DNA vaccines are capable of inducing humoral and cellular immunity, and are important to control bovine herpesvirus 1 (BoHV-1), an agent of the bovine respiratory disease complex. In previous work, a DNA plasmid that encodes a secreted form of BoHV-1 glycoprotein D (pCIgD) together with commercial adjuvants provided partial protection against viral challenge of bovines. In this work, we evaluate new molecules that could potentiate the DNA vaccine. We show that a plasmid encoding a soluble CD40 ligand (CD40L) and the adjuvant Montanide™ GEL01 (GEL01) activate in vitro bovine afferent lymph dendritic cells (ALDCs). CD40L is a co-stimulating molecule, expressed transiently on activated CD4+ T cells and, to a lesser extent, on activated B cells and platelets. The interaction with its receptor, CD40, exerts effects on the presenting cells, triggering responses in the immune system. GEL01 was designed to improve transfection of DNA vaccines. We vaccinated cattle with: pCIgD; pCIgD-GEL01; pCIgD with GEL01 and CD40L plasmid (named pCIgD-CD40L-GEL01) or with pCIneo vaccines. The results show that CD40L plasmid with GEL01 improved the pCIgD DNA vaccine, increasing anti-BoHV-1 total IgGs, IgG1, IgG2 subclasses, and neutralizing antibodies in serum. After viral challenge, bovines vaccinated with pCIgD-GEL01-CD40L showed a significant decrease in viral excretion and clinical score. On the other hand, 80% of animals in group pCIgD-GEL01-CD40L presented specific anti-BoHV-1 IgG1 antibodies in nasal swabs. In addition, PBMCs from pCIgD-CD40L-GEL01 had the highest percentage of animals with a positive lymphoproliferative response against the virus and significant differences in the secretion of IFNγ and IL-4 by mononuclear cells, indicating the stimulation of the cellular immune response. Overall, the results demonstrate that a plasmid expressing CD40L associated with the adjuvant GEL01 improves the efficacy of a DNA vaccine against BoHV-1.


Subject(s)
Adjuvants, Immunologic , Herpesviridae Infections/veterinary , Herpesvirus 1, Bovine , Immunogenicity, Vaccine , Vaccines, DNA , Viral Vaccines/immunology , Animals , Antibodies, Viral , CD40 Ligand/genetics , Cattle , Herpesviridae Infections/prevention & control , Herpesvirus 1, Bovine/genetics , Mannitol/analogs & derivatives , Plasmids/genetics , Vaccines, DNA/genetics
4.
Transbound Emerg Dis ; 68(2): 587-597, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32643286

ABSTRACT

New technologies in the field of vaccinology arise as a necessity for the treatment and control of many diseases. Whole virus inactivated vaccines and modified live virus ones used against Bovine Herpesvirus-1 (BoHV-1) infection have several disadvantages. Previous works on DNA vaccines against BoHV-1 have demonstrated the capability to induce humoral and cellular immune responses. Nevertheless, 'naked' DNA induces low immunogenic response. Thus, loading of antigen encoding DNA sequences in liposomal formulations targeting dendritic cell receptors could be a promising strategy to better activate these antigen-presenting cells (APC). In this work, a DNA-based vaccine encoding the truncated version of BoHV-1 glycoprotein D (pCIgD) was evaluated alone and encapsulated in a liposomal formulation containing LPS and decorated with MANα1-2MAN-PEG-DOPE (pCIgD-Man-L). The vaccinations were performed in mice and bovines. The results showed that the use of pCIgD-Man-L enhanced the immune response in both animal models. For humoral immunity, significant differences were achieved when total antibody titres and isotypes were assayed in sera. Regarding cellular immunity, a significant increase in the proliferative response against BoHV-1 was detected in animals vaccinated with pCIgD-Man-L when compared to the response induced in animals vaccinated with pCIgD. In addition, upregulation of CD40 molecules on the surface of bovine dendritic cells (DCs) was observed when cells were stimulated and activated with the vaccine formulations. When viral challenge was performed, bovines vaccinated with MANα1-2MAN-PEG-DOPE elicited better protection which was evidenced by a lower viral excretion. These results demonstrate that the dendritic cell targeting using MANα1-2MAN decorated liposomes can boost the immunogenicity resulting in a long-lasting immunity. Liposomes decorated with MANα1-2MAN-PEG-DOPE were tested for the first time as a DNA vaccine nanovehicle in cattle as a preventive treatment against BoHV-1. These results open new perspectives for the design of vaccines for the control of bovine rhinotracheitis.


Subject(s)
Cattle Diseases/prevention & control , Herpesviridae Infections/veterinary , Herpesvirus 1, Bovine/immunology , Herpesvirus Vaccines/administration & dosage , Vaccination/veterinary , Animals , Cattle , Herpesviridae Infections/prevention & control , Male , Mice , Vaccines, DNA/administration & dosage
5.
Viral Immunol ; 34(2): 68-78, 2021 03.
Article in English | MEDLINE | ID: mdl-33146595

ABSTRACT

Bovine herpesvirus-1 (BoHV-1) uses many mechanisms to elude the immune system; one of them is spreading intracellularly, even in the presence of specific antiviral antibodies. Cytotoxic T lymphocytes (CTLs) are necessary to eliminate the virus. The main preventive strategy is vaccination based on inactivated virus. These vaccines are poor inducers of cellular immune responses, and complicate serological diagnosis and determination of the real prevalence of infection. DNA vaccines are a good option because of the capacity of Differentiating Infected from Vaccinated Animals-(DIVA vaccine)-and may be the best way to induce cytotoxic responses. Although this type of vaccines leads to only weak "in vivo" expression and poor immune responses, incorporation of molecular and/or chemical adjuvants can improve the latter, both in magnitude and in direction. In this study, we have investigated the specific immune responses elicited in mice by DNA vaccines based on the BoHV-1 glycoprotein D (pCIgD) with and without two different adjuvants: a plasmid encoding for murine CD40L (pCD40L) or Montanide™ 1113101PR (101). Mice vaccinated with pCIgD+CD40L, pCIgD+101, and pCIgD+CD40L+101 developed significantly higher specific antibody titers against BoHV-1 than the pCIgD group (p < 0.01). The animals vaccinated with pCgD+pCD40L+101 raised significantly higher levels of IgG2a and IgG2b (p < 0.01 and p < 0.001, respectively) than mice vaccinated with pCIgD alone. On the contrary, when the activity of CTL against cells infected with BoHV-1 was measured, the vaccine pCgD+pCD40L+101 induced significantly higher levels of cytotoxicity activity (p < 0.001) than pCIgD alone. A significant increase in the CD4+ populations in the group receiving pCIgD+CD40L+101 in comparison with the pCIgD group was observed and, also, interferon gamma, interleukin (IL)-6, and IL-17A levels were higher. Considering the results obtained from this study for humoral and cellular responses in mice, the inclusion of pCD40L and 101 as adjuvants in a BoHV-1 DNA vaccine for cattle is highly recommendable.


Subject(s)
Herpesvirus 1, Bovine , Vaccines, DNA , Adjuvants, Immunologic , Animals , Antibodies, Viral , CD40 Ligand/genetics , Cattle , Herpesvirus 1, Bovine/genetics , Mice
6.
Front Vet Sci ; 7: 594, 2020.
Article in English | MEDLINE | ID: mdl-33195496

ABSTRACT

Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals that causes severe economic losses in the livestock industry. Currently available vaccines are based on the inactivated FMD virus (FMDV). Although inactivated vaccines have been effective in controlling the disease, they have some disadvantages. Because of these disadvantages, investigations are being made to produce vaccines in low containment facilities. The use of recombinant empty capsids (also referred as Virus Like Particles, VLPs) has been reported to be a promising candidate as a subunit vaccine because it avoids the use of virus in the vaccine production and conserves the conformational epitopes of the virus. Mignaqui and collaborators have produced recombinant FMDV empty capsids from serotype A/ARG/2001 using a scalable technology in mammalian cells that elicited a protective immunity against viral challenge in a mouse model. However, further evaluation of the immune response elicited by these VLPs in cattle is required. In the present work we compare the effect that VLPs or inactivated FMDV has on bovine dendritic cells and the humoral response elicited in cattle after a single vaccination.

7.
Vet Parasitol ; 287: 109275, 2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33091630

ABSTRACT

Surface proteins bound to the cell membrane by glycosylphosphatidylinositol (GPI) anchors are considered essential for the survival of pathogenic protozoans. In the case of the tick-transmitted hemoparasite Babesia bovis, the most virulent causative agent of bovine babesiosis, the GPI-anchored proteome was recently unraveled by an in silico approach. In this work, one of the identified proteins, GASA-1 (GPI-Anchored Surface Antigen-1), was thoroughly characterized. GASA-1 is 179 aa long and has the characteristic features of a GPI-anchored protein, including a signal peptide, a hydrophilic core and a hydrophobic tail that harbors a GPI anchor signal. Transcriptomic analysis shows that it is expressed in pathogenic and attenuated B. bovis strains. Notably, the gasa-1 gene has syntenic counterparts in B. bigemina and B. ovata, which also encode GPI-anchored proteins. This is highly unusual since all piroplasmid GPI-anchored proteins described so far have been found to be species-specific. Sequencing of gasa-1 alleles from B. bovis geographical isolates originating from Argentina, USA, Brazil, Mexico and Australia showed over 98 % identity in both nucleotide and amino acid sequences. A recombinant form of GASA-1 (rGASA-1) was generated in E. coli and anti-rGASA-1 antibodies were raised in mice. Fixed and live immunofluorescence assays showed that GASA-1 is expressed in in vitro cultured B. bovis merozoites and surface-exposed. Moreover, incubation of B. bovis in vitro cultures with anti-GASA-1 antibodies partially, but significantly, reduced erythrocyte invasion, indicating that this protein bears neutralization-sensitive antibody epitopes. Splenocytes of rGASA-1-inoculated mice showed a specific proliferative response when exposed to the recombinant protein, indicating that GASA-1 bears T-cell epitopes. Finally, sera from a group of B. bovis-infected cattle reacted with the recombinant protein, demonstrating that GASA-1 is expressed during natural infection of bovines with B. bovis, and suggesting that it is immunodominant. The high degree of conservation among B. bovis isolates and the presence of syntenic genes in other Babesia species suggest a relevant role of GASA-1 and GASA-1-like proteins for parasite survival, especially considering that, due to their surface location, they are exposed to the selection pressure of the host immune system. The highlighted features of GASA-1 make it an interesting candidate for the development of vaccines against bovine babesiosis.

8.
Front Vet Sci ; 7: 396, 2020.
Article in English | MEDLINE | ID: mdl-32851000

ABSTRACT

Foot-and-Mouth Disease (FMD) is an acute viral disease that causes important economy losses. Vaccines with new low-cost adjuvants that stimulate protective immune responses are needed and can be assayed in a mouse model to predict their effectiveness in cattle. Immunostimulant Particle Adjuvant (ISPA), also known as cage-like particle adjuvant, consisting of lipid boxes of dipalmitoyl-phosphatidylcholine, cholesterol, sterylamine, alpha-tocopherol, and QuilA saponin, was shown to enhance protection of a recombinant vaccine against Trypanosoma cruzi in a mouse model. Thus, in the present work, we studied the effects on the magnitude and type of immunity elicited in mice and cattle in response to a vaccine based on inactivated FMD virus (iFMDV) formulated with ISPA. It was demonstrated that iFMDV-ISPA induced protection in mice against challenge and elicited a specific antibody response in sera, characterized by a balanced Th1/Th2 profile. In cattle, the antibody titers reached corresponded to an expected percentage of protection (EPP) higher than 80%. EPP calculates the probability that livestock would be protected against a 10,000 bovine infectious doses challenge after vaccination. Moreover, in comparison with the non-adjuvanted iFMDV vaccine, iFMDV-ISPA elicited an increased specific T-cell response against the virus, including higher interferon gamma (IFNγ)+/CD8+ lymphocyte production in cattle. In this work, we report for first time that an inactivated FMDV serotype A vaccine adjuvanted with ISPA is capable of inducing protection against challenge in a murine model and of improving the specific immune responses against the virus in cattle.

9.
Transbound Emerg Dis ; 67(6): 2507-2520, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32320534

ABSTRACT

Protection against foot-and-mouth disease virus (FMDV) has been linked to the development of a humoral response. In Argentina, the official control tests for assessing the potency of FMD vaccines are protection against podal generalization (PPG) and expected percentage of protection (EPP) curves built with quantitative data of antibodies determined by liquid-phase blocking ELISA (lpELISA). The results of these tests are used to accept or discard vaccines at the batch level. In this report, a mouse model was assessed as an alternative efficacy control for FMDV vaccines. To this aim, groups of cattle (n = 18) and BALB/c mice (n = 16) were inoculated with commercial FMDV vaccines and bleedings were performed 60 days post vaccination (dpv) in cattle and 21 dpv in mice. Specific FMDV antibody titres were measured in both species by a standardized lpELISA. A statistically significant association between antibody levels in cattle and mice has already been demonstrated. However, some vaccines have been misclassified since they were considered protective based on lpELISA results but did not induce good protection in cattle upon challenge. For this reason, other immunological parameters were evaluated to improve the prediction of protection in mice, without the need of using infective virus. In addition, antibody titres by lpELISA, the IgG2b/IgG1 isotype ratio and the Avidity Index were identified as good predictors, resulting in an optimal predictive model of protection. This mouse model could be a simple and economic alternative for testing FMD vaccines since the disadvantages of high costs and facility requirements associated with the use of large animals are overcome.


Subject(s)
Antibodies, Viral/immunology , Cattle Diseases/prevention & control , Disease Models, Animal , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease/prevention & control , Immunoglobulin G/blood , Viral Vaccines/immunology , Animals , Argentina , Cattle , Cattle Diseases/virology , Enzyme-Linked Immunosorbent Assay/veterinary , Foot-and-Mouth Disease/virology , Male , Mice , Mice, Inbred BALB C , Vaccination/veterinary
10.
PLoS One ; 12(9): e0185184, 2017.
Article in English | MEDLINE | ID: mdl-28949998

ABSTRACT

Foot-and-mouth disease virus (FMDV) causes a highly contagious disease in cloven-hoofed animals. A synthetic vaccine candidate consisting of dendrimeric peptides harbouring two copies of a B-epitope [VP1(136-154)] linked to a T-cell epitope [3A(21-35)] of FMDV confers protection to type O FMDV challenge in pigs. Herein we show in cattle that novel dendrimeric peptides bearing a T-cell epitope [VP1(21-40] and two or four copies of a B-cell epitope [VP1(135-160)] from type O1 Campos FMDV (termed B2T and B4T, respectively) elicited FMDV specific immune responses to similar levels to a commercial vaccine. Animals were challenged with FMDV and 100% of vaccinated cattle with B2T or B4T were protected to podal generalization. Moreover, bovines immunized with B4T were completely protected (with no clinical signs) against FMDV challenge after three vaccine doses, which was associated with titers of viral neutralizing antibodies in serum higher than those of B2T group (p< 0.05) and levels of opsonic antibodies similar to those of animals immunized with one dose of FMDV commercial vaccine. Bovines vaccinated with both dendrimeric peptides presented high levels of IgG1 anti FMDV in sera and in mucosa. When IgA in nasal secretions was measured, 20% or 40% of the animals in B2T or B4T groups respectively, showed anti-FMDV IgA titers. In addition, B2T and B4T peptides evoked similar consistent T cell responses, being recognized in vitro by lymphocytes from most of the immunized cattle in the proliferation assay, and from all animals in the IFN-γ production assay. Taken together, these results support the potential of dendrimers B2T or B4T in cattle as a highly valuable, cost-effective FMDV candidate vaccine with DIVA potential.


Subject(s)
Dendrimers/pharmacology , Foot-and-Mouth Disease/prevention & control , Peptides/pharmacology , Animals , Cattle , Foot-and-Mouth Disease Virus/immunology , Swine , Viral Vaccines
11.
Front Immunol ; 8: 37, 2017.
Article in English | MEDLINE | ID: mdl-28179907

ABSTRACT

Bovine herpesvirus-1 (BoHV-1) is the causative agent of bovine infectious rhinotracheitis, an important disease worldwide. Although conventional BoHV-1 vaccines, including those based on the use of modified live virus and also inactivated vaccines, are currently used in many countries, they have several disadvantages. DNA vaccines have emerged as an attractive approach since they have the potential to induce both humoral and cellular immune response; nevertheless, it is largely known that potency of naked DNA vaccines is limited. We demonstrated previously, in the murine model, that the use of adjuvants in combination with a DNA vaccine against BoHV-1 is immunologically beneficial. In this study, we evaluate the immune response and protection against challenge elicited in bovines, by a DNA vaccine carrying the sequence of secreted version of glycoprotein D (gD) of BoHV-1 formulated with chemical adjuvants. Bovines were vaccinated with formulations containing the sequence of gD alone or in combination with adjuvants ESSAI 903110 or Montanide™ 1113101PR. After prime vaccination and two boosters, animals were challenged with infectious BoHV-1. Formulations containing adjuvants Montanide™ 1113101PR and ESSAI 903110 were both, capable of increasing humoral immune response against the virus and diminishing clinical symptoms. Nevertheless, only formulations containing adjuvant Montanide™ 1113101PR was capable of improving cellular immune response and diminishing viral excretion. To our knowledge, it is the first time that a BoHV-1 DNA vaccine is combined with adjuvants and tested in cattle. These results could be useful to design a vaccine for the control of bovine rhinotracheitis.

12.
Exp Parasitol ; 160: 1-10, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26551412

ABSTRACT

Profilins are actin-binding proteins that regulate the polymerization of actin filaments. In apicomplexan parasites, they are essential for invasion. Profilins also trigger the immune response of the host by activating TLRs on dendritic cells (DCs), inducing the production of pro-inflammatory cytokines. In this study we characterized for the first time the immune response and protection elicited by a vaccine based on Neospora caninum profilin in mice. Groups of eight BALB/c mice received either two doses of a recombinant N. caninum profilin expressed in Escherichia coli. (rNcPRO) or PBS, both formulated with an aqueous soy-based adjuvant enriched in TLR-agonists. Specific anti-profilin antibodies were detected in rNcPRO-vaccinated animals, mainly IgM and IgG3, which were consumed after infection. Splenocytes from rNcPRO-immunized animals proliferated after an in vitro stimulation with rNcPRO before and after challenge. An impairment of the cellular response was observed in NcPRO vaccinated and infected mice following an in vitro stimulation with native antigens of N. caninum, related to an increase in the percentage of CD4+CD25+FoxP3+. Two out of five rNcPRO-vaccinated challenged mice were protected; they were negative for parasite DNA in the brain and showed no histopathological lesions, which were found in all PBS-vaccinated animals. As a whole, our results provide evidence of a regulatory response elicited by immunization with rNcPRO, and suggest a role of profilin in the modulation and/or evasion of immune responses against N. caninum.


Subject(s)
Coccidiosis/prevention & control , Immunization/methods , Neospora/immunology , Profilins/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Antibodies, Protozoan/biosynthesis , Antibodies, Protozoan/blood , Base Sequence , CD4-Positive T-Lymphocytes/cytology , Cell Proliferation , Coccidiosis/immunology , Dendritic Cells/immunology , Female , Forkhead Transcription Factors/analysis , Immunity, Cellular , Interleukin-2 Receptor alpha Subunit/analysis , Lymphocytes/immunology , Macrophages/immunology , Mice , Mice, Inbred BALB C , Profilins/administration & dosage , Protozoan Vaccines/standards , Random Allocation , Recombinant Proteins/administration & dosage , Recombinant Proteins/immunology , Sequence Alignment , Spleen/cytology , Spleen/immunology , Vaccines, Synthetic/standards
13.
Vaccine ; 33(38): 4945-53, 2015 Sep 11.
Article in English | MEDLINE | ID: mdl-26212005

ABSTRACT

Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals. This pathology is caused by foot-and-mouth disease virus (FMDV). Over time, the development of vaccines to prevent the spread of this illness became essential. Vaccines currently used contain the inactivated form of the virus. However, vaccination generates an immune response different to that induced by the infection. We investigated whether these differences are related to intracellular mechanisms on dendritic cells (DCs). As a result, we demonstrated that the internalization of infective virus triggered the phosphorylation of ERK1/2, which was involved in the activation of caspase-9, the intrinsic pathway of apoptosis and the delivery of viral peptides on MHC class I molecules. While, inactivated virus (iFMDV) did not affect this pathway or any function mediated by its activation. As described, infectious virus in DCs was also associated to autophagy LC3 protein and was associated to lysosomal protein Lamp-2; contrary to observe for the iFMDV. Strikingly, the processing of viral antigens to accommodate in class I molecules does not appear to involve the proteasome. Finally, this increased presentation promotes a specific cytotoxic response against infectious virus.


Subject(s)
Apoptosis , Dendritic Cells/immunology , Extracellular Signal-Regulated MAP Kinases/metabolism , Foot-and-Mouth Disease Virus/immunology , Histocompatibility Antigens Class I/metabolism , MAP Kinase Signaling System , Animals , Male , Mice, Inbred BALB C , Phosphorylation
14.
Int J Nanomedicine ; 9: 963-73, 2014.
Article in English | MEDLINE | ID: mdl-24611012

ABSTRACT

Dendritic cells (DC) are antigen-presenting cells uniquely capable of priming naïve T cells and cross-presenting antigens, and they determine the type of immune response elicited against an antigen. TAT peptide (TATp), is an amphipathic, arginine-rich, cationic peptide that promotes penetration and translocation of various molecules and nanoparticles into cells. TATp-liposomes (TATp-L) used for DC transfection were prepared using TATp derivatized with a lipid-terminated polymer capable of anchoring in the liposomal membrane. Here, we show that the addition of TATp to DNA-loaded liposomes increased the uptake of DNA in DC. DNA-loaded TATp-L increased the in vitro transfection efficiency in DC cultures as evidenced by a higher expression of the enhanced green fluorescent protein and bovine herpes virus type 1 glycoprotein D (gD). The de novo synthesized gD protein was immunologically stimulating when transfections were performed with TATp-L, as indicated by the secretion of interleukin 6.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/metabolism , Liposomes/administration & dosage , Liposomes/chemistry , Peptide Fragments/administration & dosage , Peptide Fragments/chemistry , Transfection/methods , tat Gene Products, Human Immunodeficiency Virus/administration & dosage , tat Gene Products, Human Immunodeficiency Virus/chemistry , Animals , Cattle , Dendritic Cells/drug effects , Female , Green Fluorescent Proteins/genetics , Interleukin-6/biosynthesis , Mice , Mice, Inbred BALB C , Nanomedicine , Viral Proteins/genetics
15.
Viral Immunol ; 25(1): 63-72, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22233252

ABSTRACT

A live system to release heterologous antigens using an attenuated Salmonella strain was developed. We transformed Salmonella typhimurium LVR03 (S. LVR03) with a recombinant pTECH2 vector encoding 0, 1, 2, and 4 tandem copies of an imunogenic peptide of bovine herpes virus-1 (BoHV-1) glycoprotein D (gD). The system used yielded peptides fused to the non-toxic C fragment of the tetanus toxin (TetC), which has been shown to have adjuvant properties. Inoculation of BALB/c mice with the transformed Salmonella strains gave rise to a mild self-limited infection, with primary replication of bacteria occurring in Peyer's patches, even when the bacteria was administered intranasally. Humoral and cellular immune responses directed against the BoHV-1 antigens were evaluated after oral or intranasal administration of the recombinant bacteria. The results showed that the S. LVR03-dimer vaccine induced specific humoral (IgG in serum and IgG(1) and IgA in saliva), and cellular immune responses (lymphoproliferation and lymphokine secretion), against not only the selected peptide and whole gD, but also against BoHV-1, when administered intranasally. This is the first time Salmonella has been used as an expression vector to induce immunity against BoHV-1. This work demonstrates the feasibility of using this antigen-release system and encourages future experimentation with a bovine experimental model.


Subject(s)
Herpesviridae Infections/prevention & control , Herpesvirus 1, Bovine/immunology , Peptides/immunology , Tandem Repeat Sequences/genetics , Viral Proteins/immunology , Animals , Antibodies, Viral/blood , Cattle , Cell Line , Genetic Vectors , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Herpesvirus 1, Bovine/metabolism , Lymphocyte Activation , Lymphokines/metabolism , Mice , Mice, Inbred BALB C , Peptides/genetics , Peptides/metabolism , Salmonella typhimurium/genetics , Salmonella typhimurium/immunology , Salmonella typhimurium/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Vaccines/administration & dosage , Viral Vaccines/genetics , Viral Vaccines/immunology , Viral Vaccines/metabolism
16.
J Asthma Allergy ; 4: 93-102, 2011.
Article in English | MEDLINE | ID: mdl-22034573

ABSTRACT

BACKGROUND: Histamine is an important mediator in the development of allergic reactions. The biological effects of histamine are mediated through four histaminergic receptors. In recent years, an important role has been assigned to the proinflammatory functions of histamine regarding the H4 receptor. Previously, we have demonstrated that injection of immature dendritic cells treated with histamine into allergic mice promotes an increase in CD8(+) Tc2 lymphocytes, which are involved in the worsening of allergy symptoms during the chronic phase of the disease. The aim of this study was to evaluate the role of the H3/H4 receptor antagonist, thioperamide, in allergy. METHODS: Ovalbumin-allergized mice and nonallergized mice were injected with phosphate-buffered saline, dendritic cells, or thioperamide-treated dendritic cells. After treatment, the lungs of the mice were obtained and analyzed for changes in the populations of dendritic cells and T lymphocytes, as well as the expression of H and H4 receptors in mononuclear lung cells. RESULTS: We found an increase in regulatory T cells in the lungs of allergic mice intratracheally injected with dendritic cells which had their H3/H4 receptors blocked with thioperamide. We also found an increase in the production of interleukin-10 by dendritic cells of the lung. Finally, we observed a decrease in serum levels of specific anti-IgE and a reduction of eosinophils in bronchoalveolar lavage from allergic mice. CONCLUSION: Thioperamide induces a significant improvement in symptoms of allergic reaction perhaps via induction of regulatory T lymphocytes. These findings may become relevant in the understanding of type 1 hypersensivity reactions.

17.
Immunology ; 134(2): 185-97, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21896013

ABSTRACT

Leukotriene C(4) is an important mediator in the development of inflammatory reactions and ischaemia. Previous studies have shown that leukotriene C(4) is able to modulate the function of dendritic cells (DCs) and induce their chemotaxis from skin to lymph node. In this study, we decided to evaluate the modulation exerted by leukotriene C(4) on DCs, depending on their status of activation. We showed for the first time that leukotriene C(4) stimulates endocytosis both in immature and lipopolysaccharide (LPS) -activated DCs. Moreover, it suppressed the interleukin-12p70 (IL-12p70) release, but induces the secretion of IL-23 by DCs activated with LPS and promotes the expansion of T helper type 17 (Th17) lymphocytes. Furthermore, blocking the release of IL-23 reduced the percentages of CD4(+) T cells producing IL-17 in a mixed lymphocyte reaction. Ours results suggest that leukotriene C(4) interferes with the complete maturation of inflammatory DCs in terms of phenotype and antigen uptake, while favouring the release of IL-23, the main cytokine involved in the maintenance of the Th17 profile.


Subject(s)
Dendritic Cells/immunology , Interleukin-12/immunology , Interleukin-23/immunology , Leukotriene C4/immunology , Animals , Cells, Cultured , Endocytosis/immunology , Female , Lipopolysaccharides/immunology , Mice , Mice, Inbred C57BL , Th17 Cells/immunology
18.
Immunology ; 130(4): 589-96, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20406304

ABSTRACT

Histamine controls the function of dendritic cells (DCs). It appears to be required for the normal development of DCs. It also induces the chemotaxis of immature DCs and promotes the differentiation of CD4(+) T cells into cells with a T helper type 2 (Th2) profile. Moreover, we have recently shown that histamine stimulates both the uptake and the cross-presentation of antigens by DCs, supporting the theory that histamine promotes activation of CD8(+) T cells during the development of allergic pathologies. Here, we investigated whether the course of an allergic response, in a well-defined model of ovalbumin (OVA)-induced allergic airway inflammation, could be modulated by intratracheal injection of OVA-pulsed DCs previously treated with histamine (DCHISs). Compared with control DCs, DCHISs induced: (i) greater recruitment of CD8(+) T cells in the lung, (ii) greater stimulation of the production of interleukin (IL)-5 by lung CD8(+) T cells, and (iii) increased recruitment of CD11c/CD8 double-positive DCs in the lungs of allergic mice. Moreover, mice treated with DCHISs showed increased levels of serum-specific immunoglobulin E (IgE) antibodies directed to OVA, and a higher proportion of eosinophils in bronchoalveolar lavage (BAL) compared with mice treated with OVA-pulsed control DCs. Our results support the notion that histamine, by acting on DCs, increases the severity of allergic processes.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Histamine/immunology , Hypersensitivity/immunology , Lung Diseases/immunology , Animals , Cells, Cultured , Female , Mice , Mice, Inbred BALB C , Ovalbumin/immunology
19.
J Control Release ; 134(1): 41-6, 2009 Feb 20.
Article in English | MEDLINE | ID: mdl-19059290

ABSTRACT

Antigen presenting cells (APC) are among the most important cells of the immune system since they link the innate and the adaptative immune responses, directing the type of immune response to be elicited. To modulate the immune response in immune preventing or treating therapies, gene delivery into immunocompetent cells could be used. However, APC are very resistant to transfection. To increase the efficiency of APC transfection, we have used liposome-based lipoplexes additionally modified with cell-penetrating TAT peptide (TATp) for better intracellular delivery of a model plasmid encoding for the enhanced-green fluorescent protein (pEGFP). pEGFP-bearing lipoplexes made of a mixture of PC:Chol:DOTAP (60:30:10 molar ratio) with the addition of 2% mol of polyethylene glycol-phosphatidylethanolamine (PEG-PE) conjugate (plain-L) or TATp-PEG-PE (TATp-L) were shown to effectively protect the incorporated DNA from degradation. Uptake assays of rhodamine-labeled lipoplexes and transfections with the EGFP reporter gene were performed with APC derived from the mouse spleen. TATp-L-based lipoplexes allowed for significantly enhanced both, the uptake and transfection in APC. Such a tool could be used for the APC transfection as a first step in immune therapy.


Subject(s)
Antigen-Presenting Cells/cytology , Liposomes/analysis , Transfection/methods , Animals , Antigen-Presenting Cells/metabolism , Cells, Cultured , DNA/chemistry , Gene Products, tat/chemistry , Gene Products, tat/genetics , Liposomes/chemistry , Mice , Spleen/cytology , Spleen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...