Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 56(28): 3579-3586, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28621522

ABSTRACT

The fact that the heritable neurodegenerative disorder Huntington's disease (HD) is autosomal dominant means that there is one wild type and one mutant allele in most HD patients. The CAG repeat expansion in the exon 1 of the protein huntingtin (HTTex1) that causes the disease leads to the formation of HTT fibrils in vitro and vivo. An important question for understanding the molecular mechanism of HD is which role wild type HTT plays for the formation, propagation, and structure of these HTT fibrils. Here we report that fibrils of mutant HTTex1 are able to seed the aggregation of wild type HTTex1 into amyloid fibrils, which in turn can seed the fibril formation of mutant HTTex1. Solid-state NMR and electron paramagnetic resonance data showed that wild type HTTex1 fibrils closely resemble the structure of mutant fibrils, with small differences indicating a less extended fibril core. These data suggest that wild type fibrils can faithfully perpetuate the structure of mutant fibrils in HD. However, wild type HTTex1 monomers have a much higher equilibrium solubility compared to mutant HTTex1, and only a small fraction incorporates into fibrils.


Subject(s)
Amyloid/genetics , Huntingtin Protein/genetics , Huntington Disease/genetics , Huntington Disease/pathology , Amyloid/chemistry , Amyloid/ultrastructure , Exons , Humans , Huntingtin Protein/chemistry , Huntingtin Protein/ultrastructure , Huntington Disease/metabolism , Mutation , Nuclear Magnetic Resonance, Biomolecular , Protein Aggregates , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...