Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Opt Express ; 27(9): 12666-12672, 2019 Apr 29.
Article in English | MEDLINE | ID: mdl-31052805

ABSTRACT

We introduce a compressive sensing based approach for single pixel hyperspectral chemical imaging in a broad spectral range in the near-infrared. Fully integrated MEMS based Fabry-Pérot tunable filter spectrometers and a digital micro-mirror device were employed to achieve spectral and spatial resolution, respectively. The available spectral range from 1500 to 2200 nm covers molecular overtone vibrations enabling chemical identification. Hyperspectral images of different adhesives deposited on a textile were recorded revealing their chemical composition. Furthermore, spectrally resolved near-infrared images with compression rates up to 90% are presented. The approach of single pixel imaging illustrates a promising technology for the infrared spectral range superior to conventionally used costly focal plane arrays.

2.
Opt Express ; 26(23): 30644-30654, 2018 Nov 12.
Article in English | MEDLINE | ID: mdl-30469958

ABSTRACT

Chemical mapping was demonstrated with a mid-infrared (MIR) microspectroscopy setup based on a supercontinuum source (SC) emitting in the spectral range from 1.55 to 4.5 µm and a MEMS-based Fabry-Pérot filter spectrometer. Diffraction limited spatial resolution in reflection geometry was achieved. A multilayer film consisting of different polymers and mixtures thereof was measured and results were compared to those gained with a conventional FTIR microscope equipped with a thermal MIR source. Results show that compared to thermal sources, the application of the SC source results in higher signal-to-noise ratios together with better spatial resolution and faster scanning. Furthermore, diffraction limited imaging of red blood cells was demonstrated for the first time in the MIR spectral region in reflection mode. The distinctive characteristics of the MIR spectral region in conjunction with the high brightness, spatial coherence and broadband nature of supercontinuum radiation show the potential for improving infrared microscopy significantly.

3.
Opt Lett ; 43(20): 5074-5077, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30320822

ABSTRACT

In this Letter, we theoretically describe photoacoustic signal generation of molecules, for which triplet relaxation can be neglected, by considering the excited state lifetime, the fluorescence quantum yield, and the fast vibrational relaxation. We show that the phase response of the photoacoustic signal can be exploited to determine the excited state lifetime of dark molecules. For fluorescent molecules, the phase response can be used to determine the fluorescence quantum yield directly without the need of reference samples.

4.
Appl Spectrosc ; 72(4): 634-642, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29164925

ABSTRACT

Mid-infrared (MIR) supercontinuum (SC) lasers are an attractive new option in the field of IR spectroscopy, especially for standoff detection. Supercontinuum radiation unites high brightness, high spatial coherence, and broadband spectral coverage, thereby surpassing thermal IR sources and challenging quantum cascade lasers. The employed SC source operates in the spectral region of 1.2-4.6 µm, filling the spectral gap where quantum cascade lasers lack broader availability. In this work, the SC radiation was recorded by compact Fabry-Pérot filter spectrometers ideally suited for sensitive standoff detection with real-time capability. The noise performance of the setup and measurements of different substances at standoff distances are presented, e.g., of different paints on a metal surface and an explosive precursor. Furthermore, the real-time capability of the setup is demonstrated by monitoring the evaporation of liquid 2-propanol.

5.
Biomed Opt Express ; 7(7): 2692-702, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27446698

ABSTRACT

We report on simultaneous frequency domain optical-resolution photoacoustic and fluorescence microscopy with sub-µm lateral resolution. With the help of a blood smear, we show that photoacoustic and fluorescence images provide complementary information. Furthermore, we compare theoretically predicted signal-to-noise ratios of sinusoidal modulation in frequency domain with pulsed excitation in time domain.

6.
Opt Lett ; 40(15): 3476-9, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26258336

ABSTRACT

We demonstrate non-contact remote photoacoustic spectroscopy in the mid-infrared region. A room-temperature-operated pulsed external-cavity quantum cascade laser is used to excite photoacoustic waves within a semitransparent sample. The ultrasonic waves are detected remotely on the opposite side of the sample using a fiber-optic Mach-Zehnder interferometer, thereby avoiding problems associated with acoustic attenuation in air. We present the theoretical background of the proposed technique and demonstrate measurements on a thin polystyrene film. The obtained absorption spectrum in the region of 1030-1230 cm(-1) is compared to a spectrum obtained by attenuated total reflection, showing reasonable agreement.

7.
Nanotechnology ; 26(22): 225202, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25969173

ABSTRACT

We investigate the optical properties of ordered Ge quantum dots (QDs) by means of micro-photoluminescence spectroscopy (PL). These were grown on pit-patterned Si(001) substrates with a wide range of pit-periods and thus inter QD-distances (425-3400 nm). By exploiting almost arbitrary inter-QD distances achievable in this way we are able to choose the number of QDs that contribute to the PL emission in a range between 70 and less than three QDs. This well-defined system allows us to clarify, by PL-investigation, several points which are important for the understanding of the formation and optical properties of ordered QDs. We directly trace and quantify the amount of Ge transferred from the surrounding wetting layer (WL) to the QDs in the pits. Moreover, by exploiting different pit-shapes, we reveal the role of strain-induced activation energy barriers that have to be overcome for charge carriers generated outside the dots. These need to diffuse between the energy minimum of the WL in and between the pits, and the one in the QDs. In addition, we demonstrate that the WL in the pits is already severely intermixed with Si before upright QDs nucleate, which further enhances intermixing of ordered QDs as compared to QDs grown on planar substrates. Furthermore, we quantitatively determine the amount of Ge transferred by surface diffusion through the border region between planar and patterned substrate. This is important for the growth of ordered islands on patterned fields of finite size. We highlight that the Ge WL-facets in the pits act as PL emission centres, similar to upright QDs.

8.
Opt Express ; 21(19): 22410-22, 2013 Sep 23.
Article in English | MEDLINE | ID: mdl-24104130

ABSTRACT

In the present paper we demonstrate the possibility to image dyed solids, i.e. Rhodamine B dyed polyethylene spheres, by means of two-photon absorption-induced photoacoustic scanning microscopy. A two-photon luminescence image is recorded simultaneously with the photoacoustic image and we show that location and size of the photoacoustic and luminescence image match. In the experiments photoacoustic signals and luminescence signals are generated by pulses from a femtosecond laser. Photoacoustic signals are acquired with a hydrophone; luminescence signals with a spectrometer or an avalanche photo diode. In addition we derive the expected dependencies between excitation intensity and photoacoustic signal for single-photon absorption, two-photon absorption and for the combination of both. In order to verify our setup and evaluation method the theoretical predictions are compared with experimental results for liquid and solid specimens, i.e. a carbon fiber, Rhodamine B solution, silicon, and Rhodamine B dyed microspheres. The results suggest that the photoacoustic signals from the Rhodamine B dyed microspheres do indeed stem from two-photon absorption.


Subject(s)
Lasers , Lighting/instrumentation , Luminescent Measurements/instrumentation , Microscopy, Fluorescence, Multiphoton/instrumentation , Photoacoustic Techniques/instrumentation , Polyethylene/chemistry , Rhodamines/analysis , Equipment Design , Equipment Failure Analysis , Microspheres
9.
Opt Express ; 21 Suppl 3: A439-49, 2013 May 06.
Article in English | MEDLINE | ID: mdl-24104432

ABSTRACT

For a systematic approach to improve the reliability and the white light quality of phosphor converted light-emitting diodes (LEDs) it is imperative to gain a better understanding of the individual parameters that affect color temperature constancy and maintenance. By means of a combined optical and thermal simulation procedure, in this contribution we give a comprehensive discussion on the impact of different current driving schemes on the thermal load of the color conversion elements (CCEs) of phosphor converted LEDs. We show that on the one hand a decreasing duty cycle under pulse width modulation driving conditions may cause a notable temperature variation and on the other hand also effects due to the non-linearity between the blue radiant flux and the current have to be considered for the thermal load of the CCEs.

10.
Opt Lasers Eng ; 51(5): 571-575, 2013 May.
Article in English | MEDLINE | ID: mdl-23645943

ABSTRACT

Beam profiles are commonly measured with complementary metal oxide semiconductors (CMOS) or charge coupled devices (CCD). The devices are fast and reliable but expensive. By making use of the fact that the Bayer-filter in commercial webcams is transparent in the near infra-red (>800 nm) and their CCD chips are sensitive up to about 1100 nm, we demonstrate a cheap and simple way to measure laser beam profiles with a resolution down to around ±1 µm, which is close to the resolution of the knife-edge technique.

11.
Nanotechnology ; 24(10): 105601, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23416837

ABSTRACT

We identify the most important parameters for the growth of ordered SiGe islands on pit-patterned Si(001) substrates. From a multi-dimensional parameter space we link individual contributions to isolate their influence on ordered island growth. This includes the influences of: the pit size, pit depth and pit period on the Si buffer layer and subsequent Ge growth; the pit sidewall inclination on Ge island growth; the amount of Ge on island morphologies as well as the influences of the pit-size homogeneity, the pit period, the Ge growth temperature and rate on island formation. We highlight that the initial pit shape and pit size in combination with the growth conditions of the Si buffer layer should be adjusted to provide suitable preconditions for the growth of Ge islands with the desired size, composition and nucleation position. Furthermore, we demonstrate that the wetting layer between pits can play the role of a stabilizer that inhibits shape transformations of ordered islands. Thus, dislocation formation within islands can be delayed, uniform arrays of one island type can be fabricated and secondary island nucleation between pits can be impeded. These findings allow us to fabricate perfectly ordered and homogeneous Ge islands on one and the same sample, even if the pit period is varied from a few hundred nanometres to several micrometres.

12.
Appl Opt ; 52(3): 388-93, 2013 Jan 20.
Article in English | MEDLINE | ID: mdl-23338184

ABSTRACT

Research into the integration of optical interconnects in printed circuit boards (PCBs) is rapidly gaining interest due to the increase in data transfer speeds now required along with the need for miniaturized devices with increased complexity and functionality. We present a method that involves embedding optoelectronic components in a polymeric material and fabricating optical waveguides in one step. A silanol-terminated polysiloxane cross-linked with an acryloxy functional silane is utilized as a matrix material into which the 3D optical waveguides are inscribed by two-photon-induced polymerization. A pulsed femtosecond laser is used to directly write optical waveguides into the material, forming an optical link between lasers and photodiodes that are directly mounted on a specially designed PCB. The boards produced were characterized by monitoring the transmitted photocurrent as well as temperature-dependent data transmission properties. Data rates exceeding 4 Gbit/s were achieved.

SELECTION OF CITATIONS
SEARCH DETAIL
...