Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 7: 11259, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27052973

ABSTRACT

Microwave detectors based on the spin-torque diode effect are among the key emerging spintronic devices. By utilizing the spin of electrons in addition to charge, they have the potential to overcome the theoretical performance limits of their semiconductor (Schottky) counterparts. However, so far, practical implementations of spin-diode microwave detectors have been limited by the necessity to apply a magnetic field. Here, we demonstrate nanoscale magnetic tunnel junction microwave detectors, exhibiting high-detection sensitivity of 75,400 mV mW(-1) at room temperature without any external bias fields, and for low-input power (micro-Watts or lower). This sensitivity is significantly larger than both state-of-the-art Schottky diode detectors and existing spintronic diodes. Micromagnetic simulations and measurements reveal the essential role of injection locking to achieve this sensitivity performance. This mechanism may provide a pathway to enable further performance improvement of spin-torque diode microwave detectors.

2.
Phys Rev Lett ; 111(8): 087206, 2013 Aug 23.
Article in English | MEDLINE | ID: mdl-24010473

ABSTRACT

Stochastic dynamics of spin torque oscillators can be described in terms of magnetization drift and diffusion over a current-dependent effective energy surface given by the Fokker-Planck equation. Here we present a method that directly probes this effective energy surface via time-resolved measurements of the microwave voltage generated by a spin torque oscillator. We show that the effective energy approach provides a simple recipe for predicting spectral linewidths and line shapes near the generation threshold. Our time domain technique also accurately measures the fieldlike component of spin torque in a wide range of the voltage bias values.

3.
Sci Rep ; 3: 1426, 2013.
Article in English | MEDLINE | ID: mdl-23478390

ABSTRACT

The spin-transfer nano-oscillator (STNO) offers the possibility of using the transfer of spin angular momentum via spin-polarized currents to generate microwave signals. However, at present STNO microwave emission mainly relies on both large drive currents and external magnetic fields. These issues hinder the implementation of STNOs for practical applications in terms of power dissipation and size. Here, we report microwave measurements on STNOs built with MgO-based magnetic tunnel junctions having a planar polarizer and a perpendicular free layer, where microwave emission with large output power, excited at ultralow current densities, and in the absence of any bias magnetic fields is observed. The measured critical current density is over one order of magnitude smaller than previously reported. These results suggest the possibility of improved integration of STNOs with complementary metal-oxide-semiconductor technology, and could represent a new route for the development of the next-generation of on-chip oscillators.

4.
Phys Rev Lett ; 108(19): 197203, 2012 May 11.
Article in English | MEDLINE | ID: mdl-23003081

ABSTRACT

We demonstrate excitation of ferromagnetic resonance in CoFeB/MgO/CoFeB magnetic tunnel junctions (MTJs) by the combined action of voltage-controlled magnetic anisotropy (VCMA) and spin transfer torque (ST). Our measurements reveal that GHz-frequency VCMA torque and ST in low-resistance MTJs have similar magnitudes, and thus that both torques are equally important for understanding high-frequency voltage-driven magnetization dynamics in MTJs. As an example, we show that VCMA can increase the sensitivity of an MTJ-based microwave signal detector to the sensitivity level of semiconductor Schottky diodes.

5.
ACS Nano ; 6(7): 6115-21, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22663148

ABSTRACT

The excitation of the steady-state precessions of magnetization opens a new way for nanoscale microwave oscillators by exploiting the transfer of spin angular momentum from a spin-polarized current to a ferromagnet, referred to as spin-transfer nano-oscillators (STNOs). For STNOs to be practical, however, their relatively low output power and their relatively large line width must be improved. Here we demonstrate that microwave signals with maximum measured power of 0.28 µW and simultaneously narrow line width of 25 MHz can be generated from CoFeB-MgO-based magnetic tunnel junctions having an in-plane magnetized reference layer and a free layer with strong perpendicular anisotropy. Moreover, the generation efficiency is substantially higher than previously reported STNOs. The results will be of importance for the design of nanoscale alternatives to traditional silicon oscillators used in radio frequency integrated circuits.

SELECTION OF CITATIONS
SEARCH DETAIL
...