Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Glob Health Action ; 17(1): 2326253, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38683158

ABSTRACT

Effective and sustainable strategies are needed to address the burden of preventable deaths among children under-five in resource-constrained settings. The Tools for Integrated Management of Childhood Illness (TIMCI) project aims to support healthcare providers to identify and manage severe illness, whilst promoting resource stewardship, by introducing pulse oximetry and clinical decision support algorithms (CDSAs) to primary care facilities in India, Kenya, Senegal and Tanzania. Health impact is assessed through: a pragmatic parallel group, superiority cluster randomised controlled trial (RCT), with primary care facilities randomly allocated (1:1) in India to pulse oximetry or control, and (1:1:1) in Tanzania to pulse oximetry plus CDSA, pulse oximetry, or control; and through a quasi-experimental pre-post study in Kenya and Senegal. Devices are implemented with guidance and training, mentorship, and community engagement. Sociodemographic and clinical data are collected from caregivers and records of enrolled sick children aged 0-59 months at study facilities, with phone follow-up on Day 7 (and Day 28 in the RCT). The primary outcomes assessed for the RCT are severe complications (mortality and secondary hospitalisations) by Day 7 and primary hospitalisations (within 24 hours and with referral); and, for the pre-post study, referrals and antibiotic. Secondary outcomes on other aspects of health status, hypoxaemia, referral, follow-up and antimicrobial prescription are also evaluated. In all countries, embedded mixed-method studies further evaluate the effects of the intervention on care and care processes, implementation, cost and cost-effectiveness. Pilot and baseline studies started mid-2021, RCT and post-intervention mid-2022, with anticipated completion mid-2023 and first results late-2023. Study approval has been granted by all relevant institutional review boards, national and WHO ethical review committees. Findings will be shared with communities, healthcare providers, Ministries of Health and other local, national and international stakeholders to facilitate evidence-based decision-making on scale-up.Study registration: NCT04910750 and NCT05065320.


Pulse oximetry and clinical decision support algorithms show potential for supporting healthcare providers to identify and manage severe illness among children under-five attending primary care in resource-constrained settings, whilst promoting resource stewardship but scale-up has been hampered by evidence gaps.This study design article describes the largest scale evaluation of these interventions to date, the results of which will inform country- and global-level policy and planning .


Subject(s)
Algorithms , Decision Support Systems, Clinical , Oximetry , Humans , Infant , Child, Preschool , Infant, Newborn , Kenya , Primary Health Care/organization & administration , Senegal , India , Tanzania
2.
J Cardiovasc Magn Reson ; 23(1): 54, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33980259

ABSTRACT

BACKGROUND: Cardiovascular magnetic resonance (CMR) 2D feature tracking (FT) left ventricular (LV) myocardial strain has seen widespread use to characterize myocardial deformation. Yet, validation of CMR FT measurements remains scarce, particularly for regional strain. Therefore, we aimed to perform intervendor comparison of 3 different FT software against tagging. METHODS: In 61 subjects (18 healthy subjects, 18 patients with chronic myocardial infarction, 15 with dilated cardiomyopathy, and 10 with LV hypertrophy due to hypertrophic cardiomyopathy or aortic stenosis) were prospectively compared global (G) and regional transmural peak-systolic Lagrangian longitudinal (LS), circumferential (CS) and radial strains (RS) by 3 FT software (cvi42, Segment, and Tomtec) among each other and with tagging at 3T. We also evaluated the ability of regional LS, CS, and RS by different FT software vs tagging to identify late gadolinium enhancement (LGE) in the 18 infarct patients. RESULTS: GLS and GCS by all 3 software had an excellent agreement among each other (ICC = 0.94-0.98 for GLS and ICC = 0.96-0.98 for GCS respectively) and against tagging (ICC = 0.92-0.94 for GLS and ICC = 0.88-0.91 for GCS respectively), while GRS showed inconsistent agreement between vendors (ICC 0.10-0.81). For regional LS, the agreement was good (ICC = 0.68) between 2 vendors but less vs the 3rd (ICC 0.50-0.59) and moderate to poor (ICC 0.44-0.47) between all three FT software and tagging. Also, for regional CS agreement between 2 software was higher (ICC = 0.80) than against the 3rd (ICC = 0.58-0.60), and both better agreed with tagging (ICC = 0.70-0.72) than the 3rd (ICC = 0.57). Regional RS had more variation in the agreement between methods ranging from good (ICC = 0.75) to poor (ICC = 0.05). Finally, the accuracy of scar detection by regional strains differed among the 3 FT software. While the accuracy of regional LS was similar, CS by one software was less accurate (AUC 0.68) than tagging (AUC 0.80, p < 0.006) and RS less accurate (AUC 0.578) than the other two (AUC 0.76 and 0.73, p < 0.02) to discriminate segments with LGE. CONCLUSIONS: We confirm good agreement of CMR FT and little intervendor difference for GLS and GCS evaluation, with variable agreement for GRS. For regional strain evaluation, intervendor difference was larger, especially for RS, and the diagnostic performance varied more substantially among different vendors for regional strain analysis.


Subject(s)
Contrast Media , Magnetic Resonance Imaging, Cine , Gadolinium , Humans , Magnetic Resonance Spectroscopy , Predictive Value of Tests , Reproducibility of Results , Ventricular Function, Left
3.
Med Image Anal ; 71: 102044, 2021 07.
Article in English | MEDLINE | ID: mdl-33872960

ABSTRACT

3D echocardiography is an increasingly popular tool for assessing cardiac remodelling in the right ventricle (RV). It allows quantification of the cardiac chambers without any geometric assumptions, which is the main weakness of 2D echocardiography. However, regional quantification of geometry and function is limited by the lower spatial and temporal resolution and the scarcity of identifiable anatomical landmarks, especially within the ventricular cavity. We developed a technique for regionally assessing the volume of 3 relevant RV volumetric regions: apical, inlet and outflow. The proposed parcellation method is based on the geodesic distances to anatomical landmarks that are easily identifiable in the images: the apex and the tricuspid and pulmonary valves, each associated to a region. Based on these distances, we define a partition in the endocardium at end-diastole (ED). This partition is then interpolated to the blood cavity using the Laplace equation, which allows to compute regional volumes. For obtaining an end-systole (ES) partition, the endocardial partition is transported from ED to ES using a commercial image-based tracking software, and then the interpolation process is repeated. We assessed the intra- and inter-observer reproducibility using a 10-subjects dataset containing repeated quantifications of the same images, obtaining intra- and inter- observer errors (7-12% and 10-23% respectively). Finally, we propose a novel synthetic mesh generation algorithm that deforms a template mesh imposing a user-defined strain to a template mesh. We used this method to create a new dataset for involving distinct types of remodelling that were used to assess the sensitivity of the parcellation method to identify volume changes affecting different parts. We show that the parcellation method is adequate for capturing local circumferential and global circumferential and longitudinal RV remodelling, which are the most clinically relevant cases.


Subject(s)
Echocardiography, Three-Dimensional , Ventricular Dysfunction, Right , Echocardiography , Heart Ventricles/diagnostic imaging , Humans , Reproducibility of Results , Ventricular Function, Right
4.
Circ Cardiovasc Imaging ; 14(1): e011680, 2021 01.
Article in English | MEDLINE | ID: mdl-33438438

ABSTRACT

BACKGROUND: Pulmonary transit time (PTT) from first-pass perfusion imaging is a novel parameter to evaluate hemodynamic congestion by cardiac magnetic resonance (cMR). We sought to evaluate the additional prognostic value of PTT in heart failure with reduced ejection fraction over other well-validated predictors of risk including the Meta-Analysis Global Group in Chronic Heart Failure risk score and ischemic cause. METHODS: We prospectively followed 410 patients with chronic heart failure with reduced ejection fraction (61±13 years, left ventricular (LV) ejection fraction 24±7%) who underwent a clinical cMR to assess the prognostic value of PTT for a primary endpoint of overall mortality and secondary composite endpoint of cardiovascular death and heart failure hospitalization. Normal reference values of PTT were evaluated in a population of 40 asymptomatic volunteers free of cardiovascular disease. Results PTT was significantly increased in patients with heart failure with reduced ejection fraction as compared to controls (9±6 beats and 7±2 beats, respectively, P<0.001), and correlated not only with New York Heart Association class, cMR-LV and cMR-right ventricular (RV) volumes, cMR-RV and cMR-LV ejection fraction, and feature tracking global longitudinal strain, but also with cardiac output. Over 6-year median follow-up, 182 patients died and 200 reached the secondary endpoint. By multivariate Cox analysis, PTT was an independent and significant predictor of both endpoints after adjustment for Meta-Analysis Global Group in Chronic Heart Failure risk score and ischemic cause. Importantly in multivariable analysis, PTT in beats had significantly higher additional prognostic value to predict not only overall mortality (χ2 to improve, 12.3; hazard ratio, 1.35 [95% CI, 1.16-1.58]; P<0.001) but also the secondary composite endpoints (χ2 to improve=20.1; hazard ratio, 1.23 [95% CI, 1.21-1.60]; P<0.001) than cMR-LV ejection fraction, cMR-RV ejection fraction, LV-feature tracking global longitudinal strain, or RV-feature tracking global longitudinal strain. Importantly, PTT was independent and complementary to both pulmonary artery pressure and reduced RV ejection fraction<42% to predict overall mortality and secondary combined endpoints. CONCLUSIONS: Despite limitations in temporal resolution, PTT derived from first-pass perfusion imaging provides higher and independent prognostic information in heart failure with reduced ejection fraction than clinical and other cMR parameters, including LV and RV ejection fraction or feature tracking global longitudinal strain. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03969394.


Subject(s)
Heart Failure/diagnosis , Hospitalization/trends , Magnetic Resonance Imaging, Cine/methods , Risk Assessment/methods , Stroke Volume/physiology , Ventricular Function, Left/physiology , Ventricular Function, Right/physiology , Belgium/epidemiology , Female , Follow-Up Studies , Heart Failure/mortality , Heart Failure/physiopathology , Humans , Male , Middle Aged , Predictive Value of Tests , Prognosis , Prospective Studies , Survival Rate/trends
5.
Sci Rep ; 10(1): 7180, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32346030

ABSTRACT

Assessment of intraventricular pressure gradients (IVPG) using color Doppler M-mode echocardiography has gained increasing interest in the evaluation of cardiac function. However, standardized analysis tools for IVPG quantification are missing. We aimed to evaluate the feasibility, the test-retest observer reproducibility, and the inter-system variability of a semi-automated IVPG quantification algorithm. The study included forty healthy volunteers (50% were men). All volunteers were examined using two ultrasound systems, the Philips Epiq 7 and the General Electric Vivid 6. Left ventricular diastolic (DIVPG) and systolic (SIVPG) intraventricular pressure gradients were measured from the spatiotemporal distribution of intraventricular propagation flow velocities using color Doppler M-mode in standard apical views. There was good feasibility for both systolic and diastolic IVPG measurements (82.5% and 85%, respectively). Intra and inter-observer test-retest variability measured with the intraclass correlation coefficient were 0.98 and 0.93 for DIVPG respectively, and 0.95 and 0.89 for SIVPG respectively. The inter-system concordance was weak to moderate with Lin's concordance correlation coefficient of 0.59 for DIVPG and 0.25 for SIVPG. In conclusion, it is feasible and reproducible to assess systolic and diastolic IVPG using color Doppler M-mode in healthy volunteers. However, the inter-system variability in IVPG analysis needs to be taken into account, especially when using displayed data.


Subject(s)
Blood Pressure , Diastole , Echocardiography, Doppler, Color , Heart Ventricles , Systole , Ventricular Pressure , Adolescent , Adult , Female , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Humans , Male
6.
J Am Soc Echocardiogr ; 33(3): 342-354, 2020 03.
Article in English | MEDLINE | ID: mdl-32143780

ABSTRACT

BACKGROUND: The aim of this study was to evaluate the accuracy of mitral regurgitation (MR) volume quantified on three-dimensional (3D) color Doppler transesophageal echocardiography (TEE) using new semiautomated software compared with conventional two-dimensional (2D) proximal isovelocity surface area (PISA) transthoracic echocardiography (TTE) and TEE and cardiac magnetic resonance imaging (CMR). METHODS: Fifty-one patients (mean age, 63 ± 16 years; 35 men) prospectively underwent TTE, TEE, and CMR for MR evaluation. Regurgitant volume (RVol) by 3D MR flow quantification was compared with 2D TTE, TEE, and CMR, and the accuracy of evaluation of severe MR by 3D MR flow quantification was compared against guideline criteria by TEE. RESULTS: Twenty-nine patients had severe MR, 16 had moderate MR, and six had mild MR. Three-dimensional MR flow quantification was feasible in all patients, including prolapse (n = 37), restriction (n = 9), functional MR (n = 5), and eccentric or multiple jects (n = 41). RVol on 3D MR flow quantification correlated well with RVol on 2D PISA TTE (interclass correlation coefficient [ICC] = 0.75, P < .001), quantitatively estimated RVol (ICC = 0.74, P < .001), and 2D PISA TEE (ICC = 0.79, P < .001). Three-dimensional MR flow quantification agreed better with CMR (ICC = 0.86, P < .001) than did RVol on 2D PISA TTE (ICC = 0.66, P < .001) and 2D PISA TEE (ICC = 0.69, P < .001), with narrower limits of agreement on Bland-Altman analysis. Three-dimensional MR flow quantification had high accuracy for diagnosing severe MR using TEE (area under the curve = 0.85, 95% CI 0.74-0.96, P < .001) or CMR (area under the curve = 0.95; 95% CI, 0.89-1.00; P < .001) as the criterion. CONCLUSIONS: The new software enabled semiautomated 3D MR flow quantification in complex MR with multiple and eccentric jets and showed better agreement with CMR than 2D PISA TTE or TEE, suggesting that this method is more accurate than conventional 2D PISA TTE and TEE.


Subject(s)
Echocardiography, Three-Dimensional , Mitral Valve Insufficiency , Echocardiography, Doppler, Color , Echocardiography, Transesophageal , Humans , Male , Middle Aged , Mitral Valve Insufficiency/diagnostic imaging , Reproducibility of Results , Severity of Illness Index
7.
IEEE Trans Biomed Eng ; 66(4): 956-966, 2019 04.
Article in English | MEDLINE | ID: mdl-30113891

ABSTRACT

OBJECTIVE: The aim of this paper is to describe an automated diagnostic pipeline that uses as input only ultrasound (US) data, but is at the same time informed by a training database of multimodal magnetic resonance (MR) and US image data. METHODS: We create a multimodal cardiac motion atlas from three-dimensional (3-D) MR and 3-D US data followed by multi-view machine learning algorithms to combine and extract the most meaningful cardiac descriptors for classification of dilated cardiomyopathy (DCM) patients using US data only. More specifically, we propose two algorithms based on multi-view linear discriminant analysis and multi-view Laplacian support vector machines (MvLapSVMs). Furthermore, a novel regional multi-view approach is proposed to exploit the regional relationships between the two modalities. RESULTS: We evaluate our pipeline on the classification task of discriminating between normals and DCM patients. Results show that the use of multi-view classifiers together with a cardiac motion atlas results in a statistically significant improvement in accuracy compared to classification without the multimodal atlas. MvLapSVM was able to achieve the highest accuracy for both the global approach (92.71%) and the regional approach (94.32%). CONCLUSION: Our work represents an important contribution to the understanding of cardiac motion, which is an important aid in the quantification of the contractility and function of the left ventricular myocardium. SIGNIFICANCE: The intended workflow of the developed pipeline is to make use of the prior knowledge from the multimodal atlas to enable robust extraction of indicators from 3-D US images for detecting DCM patients.


Subject(s)
Cardiomyopathy, Dilated/diagnostic imaging , Heart/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Machine Learning , Algorithms , Databases, Factual , Heart/physiology , Humans , Magnetic Resonance Imaging , Movement/physiology , Multimodal Imaging/methods , Support Vector Machine , Ultrasonography
8.
J Am Soc Echocardiogr ; 31(9): 1021-1033.e1, 2018 09.
Article in English | MEDLINE | ID: mdl-29936007

ABSTRACT

BACKGROUND: In prior work, the authors demonstrated that two-dimensional speckle-tracking (2DST) correlated well but systematically overestimated global longitudinal strain (LS) and circumferential strain (CS) compared with two-dimensional cardiac magnetic resonance tagging (2DTagg) and had poor agreement on a segmental basis. Because three-dimensional speckle-tracking (3DST) has recently emerged as a new, more comprehensive evaluation of myocardial deformation, this study was undertaken to evaluate whether it would compare more favorably with 2DTagg than 2DST. METHODS: In a prospective two-center trial, 119 subjects (29 healthy volunteers, 63 patients with left ventricular dysfunction, and 27 patients with left ventricular hypertrophy) underwent 2DST, 3DST, and 2DTagg. Global, regional (basal, mid, and apical), and segmental (18 and 16 segments per patient) LS and CS by 2DST and 3DST were compared with 2DTagg using intraclass correlation coefficients (ICCs) and Bland-Altman analysis. Test-retest reproducibility of 3DST and 2DST was compared in 48 other patients. RESULTS: Both global LS and CS by 3DST agreed better with 2DTagg (ICC = 0.89 and ICC = 0.83, P < .001 for both; bias = 0.5 ± 2.3% and 0.2 ± 3%) than 2DST (ICC = 0.65 and ICC = 0.55, P < .001 for both; bias = -5.5 ± 2.5% and -7 ± 5.3%). Unlike 2DST, 3DST did not overestimate deformation at the regional and particularly the apical levels and at the segmental level had lower bias (LS, 0.8 ± 2.8% vs -5.3 ± 2.4%; CS, -0.01 ± 2.8% vs -7 ± 2.8%, respectively) but similar agreement with 2DST (LS: ICC = 0.58 ± 0.16 vs 0.56 ± 0.12; CS: ICC = 0.58 ± 0.12 vs 0.51 ± 0.1) with 2DTagg. Finally, 3DST had similar global LS, but better global CS test-retest variability than 2DST. CONCLUSIONS: Using 2DTagg as reference, 3DST had better agreement and less bias for global and regional LS and CS. At the segmental level, 3DST demonstrated comparable agreement but lower bias versus 2DTagg compared with 2DST. Also, test-retest variability for global CS by 3DST was better than by 2DST. This suggests that 3DST is superior to 2DST for analysis of global and regional myocardial deformation, but further refinement is needed for both 3DST and 2DST at the segmental level.


Subject(s)
Echocardiography/methods , Hypertrophy, Left Ventricular/diagnostic imaging , Magnetic Resonance Imaging/methods , Ventricular Dysfunction, Left/diagnostic imaging , Belgium , Case-Control Studies , Echocardiography, Three-Dimensional , Female , France , Humans , Hypertrophy, Left Ventricular/physiopathology , Male , Middle Aged , Myocardium , Prospective Studies , Reproducibility of Results , Ventricular Dysfunction, Left/physiopathology
9.
Circ Cardiovasc Imaging ; 10(11)2017 Nov.
Article in English | MEDLINE | ID: mdl-29138230

ABSTRACT

BACKGROUND: Despite widespread use to characterize and refine prognosis, validation data of two-dimensional (2D) speckle tracking (2DST) echocardiography myocardial strain measurement remain scarce. METHODS AND RESULTS: Global and regional subendocardial peak-systolic Lagrangian longitudinal (LS) and circumferential strain (CS) by 2DST and 2D-tagged (2DTagg) cardiac magnetic resonance imaging were compared against sonomicrometry in a dynamic heart phantom and among each other in 136 patients included prospectively at 2 centers. The ability of regional LS and CS 2DST and 2DTagg to identify late gadolinium enhancement was compared using receiver operating characteristics curves. In vitro, both LS-2DST and 2DTagg highly agreed with sonomicrometry (intraclass correlation coefficient [ICC], 0.89 and ICC, 0.90, both P<0.001 with -3±2.8% and 0.34±4.35% bias, respectively). In patients, both global LS and global CS 2DST agreed well with 2DTagg (ICC, 0.89 and ICC, 0.80; P<0.001); however, they provided systematically greater values (relative bias of -37±27% and -25±37% for global LS and global CS, respectively). On regional basis, however, ICC (from 0.17 to 0.81) and relative bias (from -9 to -98%) between 2DST and 2DTagg varied strongly among segments. Ability to discriminate infarcted versus noninfarcted segments by late gadolinium enhancement was similarly good for regional LS 2DTagg and 2DST (area under the curve, 0.66 versus 0.59; P=0.08), while it was lower for CS 2DST than 2DTagg (area under the curve, 0.61 versus 0.75; P<0.001). CONCLUSIONS: The high accuracy against sonomicrometry and good agreement of global LS and global CS by 2DST and 2DTagg confirm the overall validity of 2DST strain measurement. Yet, higher intertechnique segmental variability and lower ability for detecting infarct suggest that 2DST strain estimates may be less performant on regional than on global basis.


Subject(s)
Echocardiography/methods , Heart Diseases/diagnostic imaging , Magnetic Resonance Imaging, Cine , Myocardial Contraction , Ventricular Function, Left , Adult , Aged , Belgium , Biomechanical Phenomena , Case-Control Studies , Contrast Media/administration & dosage , Echocardiography/instrumentation , Female , France , Heart Diseases/physiopathology , Humans , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging, Cine/instrumentation , Male , Middle Aged , Organometallic Compounds/administration & dosage , Phantoms, Imaging , Predictive Value of Tests , Prospective Studies , Reproducibility of Results , Software Validation , Stress, Mechanical , Stroke Volume
10.
Med Image Anal ; 40: 96-110, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28646674

ABSTRACT

Cardiac motion atlases provide a space of reference in which the motions of a cohort of subjects can be directly compared. Motion atlases can be used to learn descriptors that are linked to different pathologies and which can subsequently be used for diagnosis. To date, all such atlases have been formed and applied using data from the same modality. In this work we propose a framework to build a multimodal cardiac motion atlas from 3D magnetic resonance (MR) and 3D ultrasound (US) data. Such an atlas will benefit from the complementary motion features derived from the two modalities, and furthermore, it could be applied in clinics to detect cardiovascular disease using US data alone. The processing pipeline for the formation of the multimodal motion atlas initially involves spatial and temporal normalisation of subjects' cardiac geometry and motion. This step was accomplished following a similar pipeline to that proposed for single modality atlas formation. The main novelty of this paper lies in the use of a multi-view algorithm to simultaneously reduce the dimensionality of both the MR and US derived motion data in order to find a common space between both modalities to model their variability. Three different dimensionality reduction algorithms were investigated: principal component analysis, canonical correlation analysis and partial least squares regression (PLS). A leave-one-out cross validation on a multimodal data set of 50 volunteers was employed to quantify the accuracy of the three algorithms. Results show that PLS resulted in the lowest errors, with a reconstruction error of less than 2.3 mm for MR-derived motion data, and less than 2.5  mm for US-derived motion data. In addition, 1000 subjects from the UK Biobank database were used to build a large scale monomodal data set for a systematic validation of the proposed algorithms. Our results demonstrate the feasibility of using US data alone to analyse cardiac function based on a multimodal motion atlas.


Subject(s)
Heart/diagnostic imaging , Heart/physiology , Magnetic Resonance Imaging/methods , Movement , Multimodal Imaging/methods , Spatio-Temporal Analysis , Ultrasonography/methods , Algorithms , Heart/physiopathology , Heart Diseases/diagnostic imaging , Humans , Reproducibility of Results , Sensitivity and Specificity , United States
11.
Med Phys ; 42(9): 5222-37, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26328972

ABSTRACT

PURPOSE: This paper addresses the reconstruction of x-ray cone-beam computed tomography (CBCT) for interventional C-arm systems. Subsampling of CBCT is a significant issue with C-arms due to their slow rotation and to the low frame rate of their flat panel x-ray detectors. The aim of this work is to propose a novel method able to handle the subsampling artifacts generally observed with analytical reconstruction, through a content-driven hierarchical reconstruction based on compressed sensing. METHODS: The central idea is to proceed with a hierarchical method where the most salient features (high intensities or gradients) are reconstructed first to reduce the artifacts these features induce. These artifacts are addressed first because their presence contaminates less salient features. Several hierarchical schemes aiming at streak artifacts reduction are introduced for C-arm CBCT: the empirical orthogonal matching pursuit approach with the ℓ0 pseudonorm for reconstructing sparse vessels; a convex variant using homotopy with the ℓ1-norm constraint of compressed sensing, for reconstructing sparse vessels over a nonsparse background; homotopy with total variation (TV); and a novel empirical extension to nonlinear diffusion (NLD). Such principles are implemented with penalized iterative filtered backprojection algorithms. For soft-tissue imaging, the authors compare the use of TV and NLD filters as sparsity constraints, both optimized with the alternating direction method of multipliers, using a threshold for TV and a nonlinear weighting for NLD. RESULTS: The authors show on simulated data that their approach provides fast convergence to good approximations of the solution of the TV-constrained minimization problem introduced by the compressed sensing theory. Using C-arm CBCT clinical data, the authors show that both TV and NLD can deliver improved image quality by reducing streaks. CONCLUSIONS: A flexible compressed-sensing-based algorithmic approach is proposed that is able to accommodate for a wide range of constraints. It is successfully applied to C-arm CBCT images that may not be so well approximated by piecewise constant functions.


Subject(s)
Cone-Beam Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Algorithms , Artifacts , Diffusion , Humans
12.
Med Image Comput Comput Assist Interv ; 15(Pt 1): 223-30, 2012.
Article in English | MEDLINE | ID: mdl-23285555

ABSTRACT

This work tackles three-dimensional reconstruction of tomographic acquisitions in C-arm-based rotational angiography. The relatively slow rotation speed of C-arm systems involves motion artifacts that limit the use of three-dimensional imaging in interventional procedures. The main contribution of this paper is a reconstruction algorithm that deals with the temporal variations due to intra-arterial injections. Based on a compressed-sensing approach, we propose a multiple phase reconstruction with spatio-temporal constraints. The algorithm was evaluated by qualitative and quantitative assessment of image quality on both numerical phantom experiments and clinical data from vascular C-arm systems. In this latter case, motion artifacts reduction was obtained in spite of the cone-beam geometry, the short-scan acquisition, and the truncated and subsampled data.


Subject(s)
Angiography/methods , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Algorithms , Artifacts , Computer Simulation , Diagnostic Imaging/methods , Humans , Models, Statistical , Motion , Phantoms, Imaging , Rotation , Software , Time Factors
13.
Med Image Comput Comput Assist Interv ; 14(Pt 1): 97-104, 2011.
Article in English | MEDLINE | ID: mdl-22003605

ABSTRACT

In this paper, we address three-dimensional tomographic reconstruction of rotational angiography acquisitions. In clinical routine, angular subsampling commonly occurs, due to the technical limitations of C-arm systems or possible improper injection. Standard methods such as filtered backprojection yield a reconstruction that is deteriorated by sampling artifacts, which potentially hampers medical interpretation. Recent developments of compressed sensing have demonstrated that it is possible to significantly improve reconstruction of subsampled datasets by generating sparse approximations through l1-penalized minimization. Based on these results, we present an extension of the iterative filtered backprojection that includes a sparsity constraint called soft background subtraction. This approach is shown to provide sampling artifact reduction when reconstructing sparse objects, and more interestingly, when reconstructing sparse objects over a non-sparse background. The relevance of our approach is evaluated in cone-beam geometry on real clinical data.


Subject(s)
Angiography/methods , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Tomography, X-Ray Computed/methods , Algorithms , Artifacts , Brain/pathology , Humans , Models, Statistical , Software , Surgery, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...