Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(6): e0195903, 2018.
Article in English | MEDLINE | ID: mdl-29897914

ABSTRACT

Seasonal influenza is a contagious respiratory illness that annually affects millions of people worldwide. To identify currently circulating influenza virus subtypes, the Centers for Disease Control and Prevention's International Reagent Resource distributes the World Health Organization (WHO) influenza reagent kits, which are used globally by testing laboratories for influenza surveillance. The data generated by the kits aid in strain selection for the influenza vaccine each season. The use of animals to produce high quality and quantities of antibodies is critical to the production of these kits. In this study, we assessed the effects and efficacy of repeated sampling from automated plasmapheresis in goats. Analysis of blood samples demonstrated that repeated automated plasmapheresis procedures did not adversely affect the immediate or long-term health of goats. Further, our results indicate that repeated plasmapheresis in goats was capable of generating 2 liters of antibody-rich plasma per goat per week. This volume is sufficient to produce enough WHO influenza kits to conduct over 1 million tests. Thus, we have shown that the rapid production of plasma in goats can positively impact the public health preparedness and response to influenza.


Subject(s)
Antibodies, Viral/blood , Antibodies, Viral/isolation & purification , Goats/blood , Hemagglutinin Glycoproteins, Influenza Virus/pharmacology , Influenza Vaccines/pharmacology , Plasmapheresis , Vaccination , Animals , Antibodies, Viral/immunology , Goats/immunology , Influenza Vaccines/immunology
2.
Am J Vet Res ; 78(6): 752-756, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28541146

ABSTRACT

OBJECTIVE To assess the immunogenicity of thermostable live-attenuated rabies virus (RABV) preserved by vaporization (PBV) and delivered to the duodenal mucosa of a wildlife species targeted for an oral vaccination program. ANIMALS 8 gray foxes (Urocyon cinereoargenteus). PROCEDURES Endoscopy was used to place RABV PBV (n = 3 foxes), alginate-encapsulated RABV PBV (3 foxes), or nonpreserved RABV (2 foxes) vaccine into the duodenum of foxes. Blood samples were collected weekly to monitor the immune response. Saliva samples were collected weekly and tested for virus shedding by use of a conventional reverse-transcriptase PCR assay. Foxes were euthanized 28 days after vaccine administration, and relevant tissues were collected and tested for presence of RABV. RESULTS 2 of 3 foxes that received RABV PBV and 1 of 2 foxes that received nonpreserved RABV seroconverted by day 28. None of the 3 foxes receiving alginate-encapsulated RABV PBV seroconverted. No RABV RNA was detected in saliva at any of the time points, and RABV antigen or RNA was not detected in any of the tissues obtained on day 28. None of the foxes displayed any clinical signs of rabies. CONCLUSIONS AND CLINICAL RELEVANCE Results for this study indicated that a live-attenuated RABV vaccine delivered to the duodenal mucosa can induce an immune response in gray foxes. A safe, potent, thermostable RABV vaccine that could be delivered orally to wildlife or domestic animals would enhance current rabies control and prevention efforts.


Subject(s)
Duodenum , Foxes , Immunogenicity, Vaccine , Rabies Vaccines/immunology , Administration, Oral , Animals , Animals, Wild , Antigens, Viral , Duodenoscopy/veterinary , Duodenum/immunology , Female , Intestinal Mucosa/immunology , Male , Rabies Vaccines/administration & dosage , Vaccines, Attenuated/immunology , Volatilization
3.
J Am Assoc Lab Anim Sci ; 49(3): 274-81, 2010 May.
Article in English | MEDLINE | ID: mdl-20587156

ABSTRACT

The black-tailed prairie dog (Cynomys ludovicianus) is a member of the order Rodentia and the family Sciuridae. Ecologically, prairie dogs are a keystone species in prairie ecology. This species is used as an animal model for human gallbladder disease and diseases caused by infection with Clostridium difficile, Yersinia pestis, Francisella tularensis, and most recently, Orthopoxvirus. Despite increasing numbers of prairie dogs used in research and kept as pets, few data are available on their baseline physiology in animal facility housing conditions. To establish baseline physiologic reference ranges, we designed a study using 18 wild-caught black-tailed prairie dogs. Telemetry data were analyzed to establish circadian rhythms for activity and temperature. In addition, hematologic and serum chemistry analyses were performed. Baseline measurements were used to establish the mean for each animal, which then were compiled and analyzed to determine the reference ranges. Here we present physiologic data on serum chemistry and hematology profiles, as well as weight, core body temperature, and daily activity patterns for black-tailed prairie dogs. These results reflect the use of multiple measurements from species- and age-matched prairie dogs and likely will be useful to ecologists, scientists interested in using this animal model in research, and veterinarians caring for pet prairie dogs.


Subject(s)
Sciuridae/physiology , Animals , Body Temperature , Body Weight , Circadian Rhythm , Female , Male , Reference Values , Sciuridae/anatomy & histology , Sciuridae/blood , Sciuridae/microbiology , Telemetry
4.
J Am Assoc Lab Anim Sci ; 45(6): 44-8, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17089991

ABSTRACT

Reactions to allergens created by laboratory animals are among the most frequently encountered occupational illnesses associated with research animals. Personnel are exposed to these allergens through airborne particulate matter. Although the use of microisolation caging systems can reduce particulate matter concentrations in rooms housing mice, the operating parameters of ventilated caging systems vary extensively. We compared room air in mouse rooms containing 5 different types of caging: 1) individually ventilated caging under positive pressure with filtered intake air and exhaust air returned to the room (VCR+), 2) individually ventilated caging under negative pressure with exhaust air returned to the room (VCR-), 3) individually ventilated caging under positive pressure with exhaust air returned to the heating, ventilation, and air-conditioning (HVAC) system, 4) individually ventilated caging under negative pressure with exhaust air returned to the HVAC system, and 5) static microisolation cages. We found that rooms under VCR conditions had fewer large particles than did those under other conditions, but the numbers of 0.3 microm particles did not differ significantly among systems. Static, positive or negative pressure applied to caging units as well as route of air exhaust were found to have little influence on the total number of particles in the atmosphere. Therefore, considering the heat load, odor, and overall particulate concentration in the room, placing individually ventilated caging under negative pressure with exhaust air returned to the HVAC system appears to be the optimal overall choice when using microisolation housing for rodents.


Subject(s)
Air Pollutants, Occupational/analysis , Housing, Animal/standards , Mice , Occupational Exposure/analysis , Particulate Matter/analysis , Animals , Environmental Monitoring , Housing, Animal/classification , Occupational Exposure/prevention & control , Ventilation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...