Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Astron Astrophys ; 352(2): 659-64, 1999 Dec 10.
Article in English | MEDLINE | ID: mdl-11543325

ABSTRACT

Thanks to the mid-IR sensitivities of the ISO and IRTS orbiting spectrometers it is now possible to search the diffuse interstellar medium for heretofore inaccessible molecular emission. In view of the recent strong case for the presence of C(7-) (Kirkwood et al. 1998, Tulej et al. 1998),and the fact that carbon chains possess prominent infrared active modes in a very clean portion of the interstellar spectrum, we have analyzed the IRTS spectrum of the diffuse interstellar medium for the infrared signatures of these species. Theoretical and experimental infrared band frequencies and absolute intensities of many different carbon chain species are presented. These include cyanopolyynes, neutral and anionic linear carbon molecules, and neutral and ionized, even-numbered, hydrogenated carbon chains. We show that--as a family--these species have abundances in the diffuse ISM on the order of 10(-10) with respect to hydrogen, values consistent with their abundances in dense molecular clouds. Assuming an average length of 10 C atoms per C-chain implies that roughly a millionth of the cosmically available carbon is in the form of carbon chains and that carbon chains can account for a few percent of the visible to near-IR diffuse interstellar band (DIB) total equivalent width (not DIB number).


Subject(s)
Carbon/analysis , Carbon/chemistry , Extraterrestrial Environment , Hydrocarbons/analysis , Anions , Astronomical Phenomena , Astronomy , Hydrocarbons/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Spectrophotometry, Infrared
2.
J Phys Chem A ; 102(9): 1632-46, 1998 Feb 26.
Article in English | MEDLINE | ID: mdl-11542816

ABSTRACT

Calculations are carried out using density functional theory (DFT) to determine the harmonic frequencies and intensities of 1-methylanthracene, 9-methylanthracene, 9-cyanoanthracene, 2-aminoanthracene, acridine, and their positive ions. The theoretical data are compared with matrix-isolation spectra for these species also reported in this work. The theoretical and experimental frequencies and relative intensities for the neutral species are in generally good agreement, whereas the positive ion spectra are only in qualitative agreement. Relative to anthracene, we find that substitution of a methyl or CN for a hydrogen does not significantly affect the spectrum other than to add the characteristic methyl C-H and C triple bond N stretches near 2900 and 2200 cm-1, respectively. However, addition of NH2 dramatically affects the spectrum of the neutral. Not only are the NH2 modes themselves strong, but this electron-withdrawing group induces sufficient partial charge on the ring to give the neutral molecule spectra characteristics of the anthracene cation. The sum of the absolute intensities is about four times larger for 2-aminoanthracene than those for 9-cyanoanthracene. Substituting nitrogen in the ring at the nine position (acridine) does not greatly alter the spectrum compared with anthracene.


Subject(s)
Polycyclic Aromatic Hydrocarbons/chemistry , Spectrophotometry, Infrared , Acridines/chemistry , Anthracenes/analysis , Anthracenes/chemistry , Cosmic Dust/analysis , Extraterrestrial Environment , Models, Chemical , Polycyclic Aromatic Hydrocarbons/analysis
3.
Science ; 254(5030): 394-8, 1991 Oct 18.
Article in English | MEDLINE | ID: mdl-17742225

ABSTRACT

Full configuraton-interaction (FCI) calculations have given an unambiguous standard by which the accuracy of theoretical approaches of incorporating electron correlation into molecular structure calculations can be judged. In addition, improvements in vectorization of programs, computer technology, and algorithms now permit a systematic study of the convergence of the atomic orbital (or so-called one-particle) basis set. These advances are discussed and some examples of the solution of chemical problems by quantum mechanical calculations are given to illustrate the accuracy of current techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...