Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 138(Pt B): 109801, 2020 12.
Article in English | MEDLINE | ID: mdl-33288183

ABSTRACT

Several modifications of the Williams-Landel-Ferry (WLF) equation that incorporate the water-content dependence of the viscosity are introduced and applied to the fitting the zero-shear viscosity of a systematic series of maltopolymer-maltose blends for water contents w between 4% and 70% (M. Dupas-Langlet et al., Carbohydrate Polymers 213 (2019) 147-158). These models include a previously published model that addresses the water-content dependence of the viscosity via a Gordon-Taylor-type modification of the C2 coefficient of the WLF equation. New models that are based on two simple assumptions are introduced: 1. The viscosity at the glass transition temperature Tg decreases exponentially with the water content and 2. The WLF coefficient C2 depends linearly on the water content. The modified WLF models allow to extract the so-called isoviscosity lines, that connect points of varying temperature and water content that are characterized by the same viscosity. Based on data obtained between T = -15 °C and 70 °C using shear rheology (w = 30-70% w/w) and dynamic mechanical thermal analysis (w = 4-9% w/w), we conclude that the models provide a good fit of the experimental data, and that additional data, specifically very close to the glass transition line, is needed, to assess the hypotheses underlying the various modified WLF models. It is established that the viscosity at Tg is dependent on the composition and decreases with the content of maltose and water. The modified WLF models are used to determine Angell's fragility parameter m and Roos' strength parameter S. m and S are observed to increase, respectively decrease with increasing water and maltose content, signifying an increasing temperature dependence of the viscosity close to Tg with decreasing diluent content. The application of the isoviscosity concept to unit operations in the food and pharmaceutical industry is discussed. Specifically, we show how to analyze atomization, agglomeration, sintering and compaction using the isoviscosity concept.


Subject(s)
Vitrification , Water , Carbohydrates , Rheology , Temperature , Viscosity
2.
Carbohydr Polym ; 213: 147-158, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30879654

ABSTRACT

The rheological behavior of blends of a fractionated maltopolymer (Mw = 1.4⋅104 Da) and the disaccharide maltose is investigated as a function of water content and temperature, with emphasis on the viscosity and molecular relaxations in the approach to the glass transition. Shear rheology is combined with dynamic mechanical thermal analysis to probe viscosities between 1 mPa s and 1012 Pa s. Differential scanning calorimetry is used to determine glass transition and enthalpy relaxation of the carbohydrate blends. The rheology data are fitted with a modified version of Williams-Landel-Ferry equation (Williams et al., 1955). The fragility of the blends is quantified using Angell's fragility parameters m and F1/2 (Angell, 1991) and Roos' strength parameter S (Roos, 1995b). The increase in fragility of the maltopolymer systems with increasing water and maltose contents is interpreted as a reduction of the entanglement density and an interference of water molecules with the hydrogen bonding between the carbohydrate chains.


Subject(s)
Maltose/chemistry , Polymers/chemistry , Rheology , Water/chemistry , Temperature
3.
Phys Chem Chem Phys ; 14(11): 3996-4010, 2012 Mar 21.
Article in English | MEDLINE | ID: mdl-22327418

ABSTRACT

The dynamics following the photoexcitation of Na and Li atoms located on the surface of helium nanodroplets has been investigated in a joint experimental and theoretical study. Photoelectron spectroscopy has revealed that excitation of the alkali atoms via the (n + 1)s ←ns transition leads to the desorption of these atoms. The mean kinetic energy of the desorbed atoms, as determined by ion imaging, shows a linear dependence on excitation frequency. These experimental findings are analyzed within a three-dimensional, time-dependent density functional approach for the helium droplet combined with a Bohmian dynamics description of the desorbing atom. This hybrid method reproduces well the key experimental observables. The dependence of the observables on the impurity mass is discussed by comparing the results obtained for the (6)Li and (7)Li isotopes. The calculations show that the desorption of the excited alkali atom is accompanied by the creation of highly non-linear density waves in the helium droplet that propagate at supersonic velocities.

SELECTION OF CITATIONS
SEARCH DETAIL
...