Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 123(37): 8902-13, 2001 Sep 19.
Article in English | MEDLINE | ID: mdl-11552797

ABSTRACT

G-quadruplex DNA presents a potential target for the design and development of novel anticancer drugs. Because G-quadruplex DNA exhibits structural polymorphism, different G-quadruplex typologies may be associated with different cellular processes. Therefore, to achieve therapeutic selectivity using G-quadruplexes as targets for drug design, it will be necessary to differentiate between different types of G-quadruplexes using G-quadruplex-interactive agents. In this study, we compare the interactions of three cationic porphyrins, TMPyP2, TMPyP3, and TMPyP4, with parallel and antiparallel types of G-quadruplexes using gel mobility shift experiments and a helicase assay. Gel mobility shift experiments indicate that TMPyP3 specifically promotes the formation of parallel G-quadruplex structures. A G-quadruplex helicase unwinding assay reveals that the three porphyrins vary dramatically in their abilities to prevent the unwinding of both the parallel tetrameric G-quadruplex and the antiparallel hairpin dimer G-quadruplex DNA by yeast Sgs1 helicase (Sgs1p). For the parallel G-quadruplex, TMPyP3 has the strongest inhibitory effect on Sgs1p, followed by TMPyP4, but the reverse is true for the antiparallel G-quadruplex. TMPyP2 does not appear to have any effect on the helicase-catalyzed unwinding of either type of G-quadruplex. Photocleavage experiments were carried out to investigate the binding modes of all three porphyrins with parallel G-quadruplexes. The results reveal that TMPyP3 and TMPyP4 appear to bind to parallel G-quadruplex structures through external stacking at the ends rather than through intercalation between the G-tetrads. Since intercalation between G-tetrads has been previously proposed as an alternative binding mode for TMPyP4 to G-quadruplexes, this mode of binding, versus that determined by a photocleavage assay described here (external stacking), was subjected to molecular dynamics calculations to identify the relative stabilities of the complexes and the factors that contribute to these differences. The DeltaG(o) for the external binding mode was found to be driven by DeltaH(o) with a small unfavorable TDeltaS(o) term. The DeltaG(o) for the intercalation binding model was driven by a large TDeltaS(o) term and complemented by a small DeltaH(o) term. One of the main stabilizing components of the external binding model is the energy of solvation, which favors the external model over the intercalation model by -67.94 kcal/mol. Finally, we propose that intercalative binding, although less favored than external binding, may occur, but because of the nature of the intercalative binding, it is invisible to the photocleavage assay. This study provides the first experimental insight into how selectivity might be achieved for different G-quadruplexes by using structural variants within a single group of G-quadruplex-interactive drugs.


Subject(s)
DNA/chemistry , Porphyrins/chemistry , Cations/chemistry , DNA/metabolism , DNA Helicases/antagonists & inhibitors , DNA Helicases/chemistry , DNA Helicases/metabolism , Electrophoresis, Polyacrylamide Gel , Intercalating Agents/chemistry , Nucleic Acid Conformation , Photochemistry , RecQ Helicases , Saccharomyces cerevisiae Proteins , Substrate Specificity , Thermodynamics
2.
J Biomol Struct Dyn ; 16(3): 487-509, 1998 Dec.
Article in English | MEDLINE | ID: mdl-10052609

ABSTRACT

Molecular dynamic (MD) simulations using the BMS nucleic acid force field produce environment and sequence dependent DNA conformations that closely mimic experimentally derived structures. The parameters were initially developed to reproduce the potential energy surface, as defined by quantum mechanics, for a set of small molecules that can be used as the building blocks for nucleic acid macromolecules (dimethyl phosphate, cyclopentane, tetrahydrofuran, etc.). Then the dihedral parameters were fine tuned using a series of condensed phase MD simulations of DNA and RNA (in zero added salt, 4M NaCl, and 75% ethanol solutions). In the tuning process the free energy surface for each dihedral was derived from the MD ensemble and fitted to the conformational distributions and populations observed in 87 A- and B-DNA x-ray and 17 B-DNA NMR structures. Over 41 nanoseconds of MD simulations are presented which demonstrate that the force field is capable of producing stable trajectories, in the correct environments, of A-DNA, double stranded A-form RNA, B-DNA, Z-DNA, and a netropsin-DNA complex that closely reproduce the experimentally determined and/or canonical DNA conformations. Frequently the MD averaged structure is closer to the experimentally determined structure than to the canonical DNA conformation. MD simulations of A- to B- and B- to A-DNA transitions are also shown. A-DNA simulations in a low salt environment cleanly convert into the B-DNA conformation and converge into the RMS space sampled by a low salt simulation of the same sequence starting from B-DNA. In MD simulations using the BMS force field the B-form of d(GGGCCC)2 in a 75% ethanol solution converts into the A-form. Using the same methodology, parameters, and conditions the A-form of d(AAATTT)2 correctly converts into the B-DNA conformation. These studies demonstrate that the force field is capable of reproducing both environment and sequence dependent DNA structures. The 41 nanoseconds (nsec) of MD simulations presented in this paper paint a global picture which suggests that the DNA structures observed in low salt solutions are largely due to the favorable internal energy brought about by the nearly uniform screening of the DNA electrostatics. While the conformations sampled in high salt or mixed solvent environments occur from selective and asymmetric screening of the phosphate groups and DNA grooves, respectively, brought about by sequence induced ion and solvent packing.


Subject(s)
Computer Simulation , DNA/chemistry , Adenine/analysis , Crystallography, X-Ray , Cytosine/analysis , Deoxyribose/analysis , Guanine/analysis , Magnetic Resonance Spectroscopy , Models, Chemical , Molecular Conformation , Oligonucleotides/analysis , Organophosphates/analysis , Thymine/analysis
3.
Biochemistry ; 33(38): 11438-52, 1994 Sep 27.
Article in English | MEDLINE | ID: mdl-7918358

ABSTRACT

Kedarcidin is a recently discovered antitumor antibiotic chromoprotein. The solution conformation of the kedarcidin apoprotein (114 residues) has been characterized by heteronuclear multidimensional NMR spectroscopy. Sequence-specific backbone atom resonance assignments were obtained for a uniformly 13C/15N-enriched sample of apokedarcidin via a semiautomated analysis of 3D HNCACB, 3D CBCA-(CO)NH, 4D HNCAHA, 4D HN(CO)CAHA, 3D HBHA(CO)NH, and 3D HNHA(Gly) spectra. Side-chain assignments were subsequently obtained by analysis of (primarily) 3D HCCH-TOCSY and HCCH-COSY spectra. A qualitative analysis of the secondary structure is presented on the basis of 3J alpha NH coupling constants, deviations of 13C alpha and 13C beta chemical shifts from random coil values, and NOEs observed in 3D 15N- and 13C-edited NOESY-HSQC spectra. This analysis revealed a four-stranded antiparallel beta-sheet, a three-stranded antiparallel beta-sheet, and two two-standed antiparallel beta-sheets. The assignments of cross-peaks in the 3D NOESY spectra were assisted by reference to a preliminary model of apokedarcidin built using the program CONGEN starting from the X-ray structure of the homologous protein aponeocarzinostatin. An ensemble of 15 apokedarcidin solution structures has been generated by variable target function minimization (DIANA program) and refined by simulated annealing (X-PLOR program). The average backbone atom root-mean-square difference between the individual structures and the mean coordinates is 0.68 +/- 0.08 A. The overall fold of apokedarcidin is well-defined; it is composed of an immunoglobulin-like seven-stranded antiparallel beta-barrel and a subdomain containing two antiparallel beta-ribbons. Highly similar tertiary structures have been previously reported for the related proteins neocarzinostatin, macromomycin, and actinoxanthin. Important structural features are revealed, including the dimensions of the chromophore-binding pocket and the locations of side chains that are likely to be involved in chromophore stabilization.


Subject(s)
Anti-Bacterial Agents/chemistry , Antibiotics, Antineoplastic/chemistry , Apoproteins/chemistry , Peptides , Amino Acid Sequence , Carbon/chemistry , Hydrogen/chemistry , Intercellular Signaling Peptides and Proteins , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Nitrogen/chemistry , Protein Conformation , Protein Structure, Secondary , Sequence Homology, Amino Acid , Solutions
5.
Chem Res Toxicol ; 1(5): 258-68, 1988.
Article in English | MEDLINE | ID: mdl-2979741

ABSTRACT

The DNA alkylation and sequence specificity of a group of natural and synthetic pyrrolo-[1,4]benzodiazepines [P(1,4)Bs] were evaluated by using an exonuclease III stop assay, and the results were compared with in vitro and in vivo biological potency and antitumor activity. The P(1,4)B antibiotics are potent antitumor agents produced by various Actinomycetes, which are believed to mediate their cytotoxic effects by covalent bonding through N-2 of guanine in the minor groove of DNA. In this article we describe the results of a sensitive DNA alkylation assay using exonuclease III which permits both estimation of the extent of DNA modification as well as location of the precise guanines to which the drugs are covalently bound. Using this assay, we have evaluated a series of natural and synthetic compounds of the P(1,4)B class for their ability to bind to DNA and also determined their DNA sequence preference. The compounds included in this study are P(1,4)Bs carrying different substituents in the aromatic ring, having varying degrees of saturation in the five-membered ring, or differing in the stereochemistry at C-11a. These same compounds were evaluated for in vitro cytotoxic activity against B16 melanoma cells, for potency in vivo in B6D2F1 mice (LD50), and for antitumor activity (ILSmax) against P388 leukemia cells. A good correlation was found between extent of DNA alkylation and in vitro and in vivo potency. Furthermore, on the basis of electronic and steric considerations, it was possible to rationalize why those compounds that showed negligible biological activity were unable to bond covalently to DNA. Last, we have determined that the degree of saturation in the five-membered ring of the P(1,4)Bs has a significant effect on the DNA bonding reactivity and biological activity of this class of compounds.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Benzodiazepines/pharmacology , DNA/metabolism , Alkylation , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/metabolism , Base Sequence , Benzodiazepines/chemistry , Benzodiazepines/metabolism , Binding Sites , DNA/chemistry , Molecular Sequence Data , Pyrroles/chemistry , Pyrroles/metabolism , Pyrroles/pharmacology , Structure-Activity Relationship
6.
J Antibiot (Tokyo) ; 41(2): 199-201, 1988 Feb.
Article in English | MEDLINE | ID: mdl-3356608

ABSTRACT

7-Cysteaminomitosane (RR-150) has been reported to be superior to mitomycin C against P388 leukemia and B-16 melanoma in mice and is less leukopenic. Studies reported here indicated the absence of a free thiol group in RR-150 and therefore the structure was incorrectly assigned. Reaction of mitomycin A with either 2-aminoethanethiol or cystamine gave the same disulfide, 7-N,7'-N'-dithiodiethylenedimitomycin C, which is the newly proposed structure for RR-150. Attempts to produce 7-cysteaminomitosane by reduction of the disulfide have not succeeded because of its apparent instability.


Subject(s)
Antibiotics, Antineoplastic/chemical synthesis , Mitomycins/chemical synthesis , Chemical Phenomena , Chemistry
8.
Br J Anaesth ; 43(7): 715, 1971 Jul.
Article in English | MEDLINE | ID: mdl-5564239
SELECTION OF CITATIONS
SEARCH DETAIL
...