Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Microcirculation ; 8(5): 335-45, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11687945

ABSTRACT

OBJECTIVE: Adhesive interactions between tumor cell surface receptors and endothelial cell adhesion molecules are thought to contribute to tumor cell arrest and extravasation during hematogenous metastasis. Recent reports suggest that melanoma cell integrin alpha4beta1 (very late antigen-4, VLA-4) interaction with the inducible cell adhesion molecule, vascular cell adhesion molecule-1 (VCAM-1), is critical for tumor cell arrest. However, no information is available regarding microvascular VCAM-1 expression during spontaneous melanoma metastasis. The objectives of this study were to evaluate VCAM-1 expression in pulmonary and extrapulmonary vascular beds during melanoma progression, and to determine whether there is an organ-specific profile for VCAM-1 expression which corresponds with the clinical pattern of melanoma metastasis. METHODS: The dual-radiolabeled monoclonal antibody (mAb) technique for quantification of VCAM-1 in different vascular beds was applied to a physiological model of melanoma (B16-BL6) metastasis. Measurements of VCAM-1 were obtained when primary tumors reached 5 mm in size, and every 7 days following removal of the primary lesion. Histological examinations were performed, and mice were placed into 2 groups, based on the presence (+colonies) or absence (-colonies) of pulmonary metastases. VCAM-1 measurements obtained from several organ systems were then compared between these 2 groups of mice. Localization of VCAM-1 was achieved through immunohistochemical staining of tissues. Plasma collected from each experimental animal, as well as melanoma-conditioned media, was assayed to determine levels of the cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-1alpha (IL-1alpha). RESULTS: Data collected from the dual-radiolabeled mAb technique indicate that 3 weeks following removal of the primary lesion, there is a tendency for VCAM-1 expression to increase in cardiac, hepatic, and cerebral vascular beds. Four weeks following primary resection, when pulmonary metastatic burden was maximal, VCAM-1 was significantly upregulated in each of these vascular beds. Results obtained from the lung indicate that VCAM-1 remains unchanged in pulmonary vessels at all time points examined. Immunohistochemical staining of heart and brain support the radiolabeled mAb measurements, and reveals that these organs exhibit an inflammatory phenotype in mice with heavy pulmonary tumor burden. Furthermore, 25% of these mice had histological evidence of melanoma metastases in heart and brain. Transplantation of liver fragments from mice with advanced pulmonary metastases into subcutaneous tissue of donor mice resulted in the formation of melanotic outgrowths. Plasma levels of the cytokines TNF-alpha and IL-1alpha were negligible in both groups of mice. CONCLUSIONS: Our results indicate that upregulation of VCAM-1 is not a prerequisite for the formation of pulmonary metastases during spontaneous melanoma metastases. However, once lung metastases become well established, organ-specific increases in VCAM-1 expression become apparent. Furthermore, these organ-specific increments in VCAM-1 expression correspond with documented clinical patterns of melanoma metastasis. The enhanced expression of VCAM-1 is independent of systemic levels of TNF-alpha and IL-1alpha, but may be the result of melanoma-induced alterations at the local level, as we found evidence of melanoma cell occupation in heart, brain, and liver in pulmonary metastases-bearing mice.


Subject(s)
Endothelium, Vascular/metabolism , Melanoma/secondary , Neoplasm Metastasis/pathology , Vascular Cell Adhesion Molecule-1/metabolism , Animals , Antibodies, Monoclonal/pharmacokinetics , Endothelium, Vascular/pathology , Immunohistochemistry , Interleukin-1/blood , Iodine Radioisotopes , Male , Melanoma/metabolism , Melanoma/pathology , Mice , Mice, Inbred C57BL , Microcirculation/metabolism , Microcirculation/pathology , Neoplasm Transplantation , Organ Specificity , Tissue Distribution , Tumor Necrosis Factor-alpha/metabolism , Vascular Cell Adhesion Molecule-1/immunology
2.
Am J Physiol ; 277(3): H1156-66, 1999 09.
Article in English | MEDLINE | ID: mdl-10484438

ABSTRACT

Coordinated adhesive interactions between lymphocyte receptors and endothelial cell adhesion molecules (CAMs) are a prerequisite for effector cell entry into tumor stroma. Whereas the diminished leukocyte-endothelial cell interactions observed in tumor microvessels have been attributed to a reduced expression of endothelial CAMs, there is no quantitative data bearing on this issue. The dual-radiolabeled monoclonal antibody technique was used to quantify constitutive and tumor necrosis factor (TNF)-alpha-induced expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), ICAM-2, P-selectin, E-selectin, and platelet-endothelial cell adhesion molecule 1 (PECAM-1) in different vascular beds of normal (C57Bl/6) and RM-1 tumor-bearing mice. When corrected for endothelial surface area, the constitutive expression of selectins in tumor vessels was higher than that observed in other vascular beds. Both constitutive and induced expression of endothelial CAMs in peripheral vascular beds did not differ between normal and tumor-bearing mice. Within the tumor, the magnitude of the upregulation of P-selectin, ICAM-1, and VCAM-1 after TNF-alpha was similar to that within other vascular beds. E-selectin expression in tumors was refractory to TNF-alpha, whereas PECAM-1 and ICAM-2 expression were significantly reduced. Our findings suggest that the presence of a solid tumor does not influence endothelial CAM expression in other vascular beds and that the higher density of selectins in nonstimulated tumor vessels may promote the recruitment of rolling leukocytes in this tissue.


Subject(s)
Cell Adhesion Molecules/metabolism , Neoplasms, Experimental/metabolism , Animals , Cell Adhesion , Cell Adhesion Molecules/analysis , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Male , Mice , Mice, Inbred C57BL , Neoplasms, Experimental/blood supply , Neoplasms, Experimental/pathology , Neovascularization, Pathologic , Tumor Necrosis Factor-alpha/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL