Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Inf Model ; 58(5): 895-901, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29659276

ABSTRACT

We have developed a set of protocols in the molecular modeling program Rosetta for performing requirement-driven protein design. First, the user specifies a set of structural features that need to be present in the designed protein. These requirements can be general (e.g., "create a protein with five helices"), or they can be very specific and require the correct placement of a set of amino acids to bind a ligand. Next, a large set of protein models are generated that satisfy the design requirements. The models are built using a method that we recently introduced into Rosetta, called SEWING, that rapidly assembles novel protein backbones by combining pieces of naturally occurring proteins. In the last step of the process, rotamer-based sequence optimization and backbone refinement are performed with Rosetta, and a variety of quality metrics are used to pick sequences for experimental characterization. Here we describe the input files and user options needed to run SEWING and perform requirement-driven design and provide detailed instructions for two specific applications of the process: the design of new structural elements at a protein-protein interface and the design of ligand binding sites.


Subject(s)
Drug Design , Models, Molecular , Proteins/chemistry , Binding Sites , Ligands , Protein Structure, Secondary , Proteins/metabolism , Software
2.
ACS Chem Biol ; 11(7): 1805-9, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27191252

ABSTRACT

Site-specific PEGylation is an important strategy for enhancing the pharmacokinetic properties of protein drugs, and has been enabled by the recent development of many chemoselective reactions for protein side-chain modification. However, the impact of these different conjugation strategies on the properties of PEG-protein conjugates is poorly understood. Here we show that the ability of PEG to enhance protein conformational stability depends strongly on the identity of the PEG-protein linker, with the most stabilizing linkers involving conjugation of PEG to planar polar groups near the peptide backbone. We also find that branched PEGs provide superior stabilization relative to their linear counterparts, suggesting additional applications for branched PEGs in protein stabilization.


Subject(s)
Polyethylene Glycols/chemistry , Proteins/chemistry , Circular Dichroism , Protein Conformation , Protein Stability
3.
J Am Chem Soc ; 136(50): 17547-60, 2014 Dec 17.
Article in English | MEDLINE | ID: mdl-25409346

ABSTRACT

PEGylation of protein side chains has been used for more than 30 years to enhance the pharmacokinetic properties of protein drugs. However, there are no structure- or sequence-based guidelines for selecting sites that provide optimal PEG-based pharmacokinetic enhancement with minimal losses to biological activity. We hypothesize that globally optimal PEGylation sites are characterized by the ability of the PEG oligomer to increase protein conformational stability; however, the current understanding of how PEG influences the conformational stability of proteins is incomplete. Here we use the WW domain of the human protein Pin 1 (WW) as a model system to probe the impact of PEG on protein conformational stability. Using a combination of experimental and theoretical approaches, we develop a structure-based method for predicting which sites within WW are most likely to experience PEG-based stabilization, and we show that this method correctly predicts the location of a stabilizing PEGylation site within the chicken Src SH3 domain. PEG-based stabilization in WW is associated with enhanced resistance to proteolysis, is entropic in origin, and likely involves disruption by PEG of the network of hydrogen-bound solvent molecules that surround the protein. Our results highlight the possibility of using modern site-specific PEGylation techniques to install PEG oligomers at predetermined locations where PEG will provide optimal increases in conformational and proteolytic stability.


Subject(s)
Polyethylene Glycols/chemistry , Protein Stability , Proteins/chemistry , Amino Acid Sequence , Binding Sites , Molecular Sequence Data , Protein Conformation , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...