Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 58(12): 4056-4060, 2019 Mar 18.
Article in English | MEDLINE | ID: mdl-30589190

ABSTRACT

We designed and synthesized a series of novel electron-accepting zinc(II)phthalocyanines (ZnPc) and probed them in p-type dye sensitized solar cells (p-DSSCs) by using CuO as photocathodes. By realizing the right balance between interfacial charge separation and charge recombination, optimized fill factors (FFs) of 0.43 were obtained. With a control over fill factors in p-DSSCs in hand we turned our attemtion to t-DSSCs, in which we combined for the first time CuO-based p-DSSCs with TiO2 -based n-DSSCs using ZnPc and N719. In the resulting t-DSSCs, the VOC of 0.86 V is the sum of those found in p- and n-DSSCs, while the FF remains around 0.63. It is only the smaller Jsc s in t-DSSCs that limits the efficiency to 0.69 %.

2.
ChemSusChem ; 10(11): 2385-2393, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28318143

ABSTRACT

Herein, the synthesis of a new family of squaraines (SQs) and their application in p-type dye-sensitized solar cells (DSSCs) is presented. In particular, two sets of SQs were designed featuring either two or four anchoring carboxylic groups combined with either oxygen or dicyanovinyl central groups. The SQs were characterized by using a joint theoretical, photophysical, and electrochemical approach. Importantly, the presence of different central groups forces a frozen cis (dicyanovinyl group) or a trans (oxygen group) SQ conformation. Based on the latter, the current work enables a direct comparison between cis and trans isomers as well as the impact of a different number of anchors. Considering their electron-accepting and light-harvesting character, they were tested in NiO-based DSSCs. Photocurrent-voltage, incident photon-to-current conversion efficiency (IPCE), and electrochemical impedance spectroscopy measurements were performed. By virtue of their different symmetry, stereochemistry, and number of carboxylic groups, altered adsorption behavior onto NiO electrodes as well as diverse charge injection and charge recombination dynamics were noted under operation conditions. SQs with four linkers in a frozen cis isomerism show the best charge collection properties among the investigated SQs, providing a valuable guideline for the molecular design of future SQs for p-type DSSCs. In addition, we assembled tandem DSSCs featuring SQ/NiO photocathodes and N719/TiO2 photoanodes. The IPCE of the resulting tandem DSSCs implies light harvesting throughout most of the visible part of the solar spectrum owing to the complementary absorption features of SQ and N719.


Subject(s)
Cyclobutanes/chemical synthesis , Electric Power Supplies , Phenols/chemical synthesis , Solar Energy , Coloring Agents/chemistry , Electrochemistry/methods , Isomerism , Nickel
3.
Nanoscale ; 8(41): 17963-17975, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27731456

ABSTRACT

We introduce a novel and comprehensive approach for the evaluation and interpretation of electrochemical impedance spectroscopy (EIS) measurements in p-type DSSCs. In detail, we correlate both the device performance and EIS figures-of-merit of a series of devices in which, the calcination temperature, film thickness, and electrolyte concentration have been systematically modified. This new approach enables the separation of the different processes across the dye/semiconductor/electrolyte interface, namely the unfavorable charge recombination and the favorable electron injection/regeneration processes. In addition, studies on non-sensitized CuO and NiO electrodes provide insights into their affinity towards a reaction with the electrolyte - CuO is far less reactive towards the polyiodide species. Overall, this work underlines the superior features of CuO with respect to NiO for p-DSSCs and demonstrates a comprehensive optimization of the CuO-based DSSCs with respect to the device architecture by the aid of EIS analysis.

4.
Angew Chem Int Ed Engl ; 54(26): 7688-92, 2015 Jun 22.
Article in English | MEDLINE | ID: mdl-26081421

ABSTRACT

A route is reported for the synthesis of two electron-accepting phthalocyanines featuring linkers with different lengths as sensitizers for p-type dye-sensitized solar cells (DSSCs). Importantly, our devices based on novel nanorod-like CuO photocathodes showed high efficiencies of up to 0.191 %: the highest value reported to date for CuO-based DSSCs.


Subject(s)
Copper/chemistry , Dielectric Spectroscopy/methods , Indoles/chemistry , Electrons , Isoindoles , Nanotubes , Solar Energy
5.
Chem Commun (Camb) ; 50(77): 11339-42, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25119111

ABSTRACT

In the current work, we have explored a novel synthetic route towards metalated porphycenes and their use in p-type NiO-based dye-sensitized solar cells. Particular emphasis is placed on the influence that the relative positioning of the anchoring group exerts on the DSSC performance.


Subject(s)
Metalloporphyrins/chemistry , Solar Energy , Metals/chemistry , Models, Molecular , Nickel/chemistry , Oxidation-Reduction , Semiconductors
SELECTION OF CITATIONS
SEARCH DETAIL
...