Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(8): e28123, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38665588

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) can lead to irreversible liver damage manifesting in systemic effects (e.g., elevated portal vein pressure and splenomegaly) with increased risk of deadly outcomes. However, the association of spleen volume with NAFLD and related type 2-diabetes (T2D) is not fully understood. The UK Biobank contains comprehensive health-data of 500,000 participants, including clinical data and MR images of >40,000 individuals. The present study estimated the spleen volume of 37,066 participants through automated deep learning-based image segmentation of neck-to-knee MR images. The aim was to investigate the associations of spleen volume with NAFLD, T2D and liver fibrosis, while adjusting for natural confounders. The recent redefinition and new designation of NAFLD to metabolic dysfunction-associated steatotic liver disease (MASLD), promoted by major organisations of studies on liver disease, was not employed as introduced after the conduct of this study. The results showed that spleen volume decreased with age, correlated positively with body size and was smaller in females compared to males. Larger spleens were observed in subjects with NAFLD and T2D compared to controls. Spleen volume was also positively and independently associated with liver fat fraction, liver volume and the fibrosis-4 score, with notable volumetric increases already at low liver fat fractions and volumes, but not independently associated with T2D. These results suggest a link between spleen volume and NAFLD already at an early stage of the disease, potentially due to initial rise in portal vein pressure.

2.
Radiol Artif Intell ; 4(4): e229001, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35923374

ABSTRACT

[This corrects the article DOI: 10.1148/ryai.210178.].

3.
Radiol Artif Intell ; 4(3): e210178, 2022 May.
Article in English | MEDLINE | ID: mdl-35652115

ABSTRACT

UK Biobank (UKB) has recruited more than 500 000 volunteers from the United Kingdom, collecting health-related information on genetics, lifestyle, blood biochemistry, and more. Ongoing medical imaging of 100 000 participants with 70 000 follow-up sessions will yield up to 170 000 MRI scans, enabling image analysis of body composition, organs, and muscle. This study presents an experimental inference engine for automated analysis of UKB neck-to-knee body 1.5-T MRI scans. This retrospective cross-validation study includes data from 38 916 participants (52% female; mean age, 64 years) to capture baseline characteristics, such as age, height, weight, and sex, as well as measurements of body composition, organ volumes, and abstract properties, such as grip strength, pulse rate, and type 2 diabetes status. Prediction intervals for each end point were generated based on uncertainty quantification. On a subsequent release of UKB data, the proposed method predicted 12 body composition metrics with a 3% median error and yielded mostly well-calibrated individual prediction intervals. The processing of MRI scans from 1000 participants required 10 minutes. The underlying method used convolutional neural networks for image-based mean-variance regression on two-dimensional representations of the MRI data. An implementation was made publicly available for fast and fully automated estimation of 72 different measurements from future releases of UKB image data. Keywords: MRI, Adipose Tissue, Obesity, Metabolic Disorders, Volume Analysis, Whole-Body Imaging, Quantification, Supervised Learning, Convolutional Neural Network (CNN) © RSNA, 2022.

4.
Comput Med Imaging Graph ; 93: 101994, 2021 10.
Article in English | MEDLINE | ID: mdl-34624770

ABSTRACT

Along with rich health-related metadata, medical images have been acquired for over 40,000 male and female UK Biobank participants, aged 44-82, since 2014. Phenotypes derived from these images, such as measurements of body composition from MRI, can reveal new links between genetics, cardiovascular disease, and metabolic conditions. In this work, six measurements of body composition and adipose tissues were automatically estimated by image-based, deep regression with ResNet50 neural networks from neck-to-knee body MRI. Despite the potential for high speed and accuracy, these networks produce no output segmentations that could indicate the reliability of individual measurements. The presented experiments therefore examine uncertainty quantification with mean-variance regression and ensembling to estimate individual measurement errors and thereby identify potential outliers, anomalies, and other failure cases automatically. In 10-fold cross-validation on data of about 8500 subjects, mean-variance regression and ensembling showed complementary benefits, reducing the mean absolute error across all predictions by 12%. Both improved the calibration of uncertainties and their ability to identify high prediction errors. With intra-class correlation coefficients (ICC) above 0.97, all targets except the liver fat content yielded relative measurement errors below 5%. Testing on another 1000 subjects showed consistent performance, and the method was finally deployed for inference to 30,000 subjects with missing reference values. The results indicate that deep regression ensembles could ultimately provide automated, uncertainty-aware measurements of body composition for more than 120,000 UK Biobank neck-to-knee body MRI that are to be acquired within the coming years.


Subject(s)
Biological Specimen Banks , Magnetic Resonance Imaging , Body Composition , Female , Humans , Male , Reproducibility of Results , Uncertainty , United Kingdom
5.
Sci Rep ; 10(1): 20963, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33262432

ABSTRACT

The UK Biobank is collecting extensive data on health-related characteristics of over half a million volunteers. The biological samples of blood and urine can provide valuable insight on kidney function, with important links to cardiovascular and metabolic health. Further information on kidney anatomy could be obtained by medical imaging. In contrast to the brain, heart, liver, and pancreas, no dedicated Magnetic Resonance Imaging (MRI) is planned for the kidneys. An image-based assessment is nonetheless feasible in the neck-to-knee body MRI intended for abdominal body composition analysis, which also covers the kidneys. In this work, a pipeline for automated segmentation of parenchymal kidney volume in UK Biobank neck-to-knee body MRI is proposed. The underlying neural network reaches a relative error of 3.8%, with Dice score 0.956 in validation on 64 subjects, close to the 2.6% and Dice score 0.962 for repeated segmentation by one human operator. The released MRI of about 40,000 subjects can be processed within one day, yielding volume measurements of left and right kidney. Algorithmic quality ratings enabled the exclusion of outliers and potential failure cases. The resulting measurements can be studied and shared for large-scale investigation of associations and longitudinal changes in parenchymal kidney volume.


Subject(s)
Biological Specimen Banks , Image Interpretation, Computer-Assisted , Kidney/anatomy & histology , Knee/anatomy & histology , Magnetic Resonance Imaging , Neck/anatomy & histology , Algorithms , Humans , Neural Networks, Computer , Reproducibility of Results , United Kingdom
6.
Sci Rep ; 10(1): 17752, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33082454

ABSTRACT

In a large-scale medical examination, the UK Biobank study has successfully imaged more than 32,000 volunteer participants with magnetic resonance imaging (MRI). Each scan is linked to extensive metadata, providing a comprehensive medical survey of imaged anatomy and related health states. Despite its potential for research, this vast amount of data presents a challenge to established methods of evaluation, which often rely on manual input. To date, the range of reference values for cardiovascular and metabolic risk factors is therefore incomplete. In this work, neural networks were trained for image-based regression to infer various biological metrics from the neck-to-knee body MRI automatically. The approach requires no manual intervention or direct access to reference segmentations for training. The examined fields span 64 variables derived from anthropometric measurements, dual-energy X-ray absorptiometry (DXA), atlas-based segmentations, and dedicated liver scans. With the ResNet50, the standardized framework achieves a close fit to the target values (median R[Formula: see text]) in cross-validation. Interpretation of aggregated saliency maps suggests that the network correctly targets specific body regions and limbs, and learned to emulate different modalities. On several body composition metrics, the quality of the predictions is within the range of variability observed between established gold standard techniques.


Subject(s)
Biometry , Magnetic Resonance Imaging , Whole Body Imaging/methods , Adult , Aged , Aged, 80 and over , Databases, Factual , Female , Humans , Image Interpretation, Computer-Assisted , Male , Middle Aged , Neural Networks, Computer , Reference Values , United Kingdom
7.
IEEE Trans Med Imaging ; 39(5): 1430-1437, 2020 05.
Article in English | MEDLINE | ID: mdl-31675324

ABSTRACT

A wealth of information is contained in images obtained by whole-body magnetic resonance imaging (MRI). Studying the link between the imaged anatomy and properties known from outside sources has the potential to give new insights into the underlying factors that manifest themselves in individual human morphology. In this work we investigate the expression of age-related changes in the whole-body image. A large dataset of about 32,000 subjects scanned from neck to knee and aged 44-82 years from the UK Biobank study was used for a machine-based analysis. We trained a convolutional neural network based on the VGG16 architecture to predict the age of a given subject based on image data from these scans. In 10-fold cross-validation on 23,000 of these images the network reached a mean absolute error (MAE) of 2.49 years (R2 = 0.83) and showed consistent performance on a separate test set of another 8,000 images. On a second test set of 100 images the network outperformed the averaged estimates given by three experienced radiologists, which reached an MAE of 5.58 years (R2 = 0.08), by more than three years on average. In an attempt to explain these findings, we employ saliency analysis that opens up the image-based criteria used by the automated method to human interpretation. We aggregate the saliency into a single anatomical visualization which clearly highlights structures in the aortic arch and knee as primary indicators of age.


Subject(s)
Magnetic Resonance Imaging , Whole Body Imaging , Aging , Humans , Knee/diagnostic imaging , Neural Networks, Computer
8.
Magn Reson Med ; 81(4): 2736-2745, 2019 04.
Article in English | MEDLINE | ID: mdl-30311704

ABSTRACT

PURPOSE: An approach for the automated segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in multicenter water-fat MRI scans of the abdomen was investigated, using 2 different neural network architectures. METHODS: The 2 fully convolutional network architectures U-Net and V-Net were trained, evaluated, and compared using the water-fat MRI data. Data of the study Tellus with 90 scans from a single center was used for a 10-fold cross-validation in which the most successful configuration for both networks was determined. These configurations were then tested on 20 scans of the multicenter study beta-cell function in JUvenile Diabetes and Obesity (BetaJudo), which involved a different study population and scanning device. RESULTS: The U-Net outperformed the used implementation of the V-Net in both cross-validation and testing. In cross-validation, the U-Net reached average dice scores of 0.988 (VAT) and 0.992 (SAT). The average of the absolute quantification errors amount to 0.67% (VAT) and 0.39% (SAT). On the multicenter test data, the U-Net performs only slightly worse, with average dice scores of 0.970 (VAT) and 0.987 (SAT) and quantification errors of 2.80% (VAT) and 1.65% (SAT). CONCLUSION: The segmentations generated by the U-Net allow for reliable quantification and could therefore be viable for high-quality automated measurements of VAT and SAT in large-scale studies with minimal need for human intervention. The high performance on the multicenter test data furthermore shows the robustness of this approach for data of different patient demographics and imaging centers, as long as a consistent imaging protocol is used.


Subject(s)
Abdominal Fat/diagnostic imaging , Diabetes Mellitus, Type 1/diagnostic imaging , Diabetes Mellitus, Type 2/diagnostic imaging , Intra-Abdominal Fat/diagnostic imaging , Magnetic Resonance Imaging , Obesity/diagnostic imaging , Adolescent , Adult , Aged , Aged, 80 and over , Algorithms , Automation , Child , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 2/complications , Female , Humans , Male , Middle Aged , Neural Networks, Computer , Obesity/complications , Pattern Recognition, Automated , Reproducibility of Results , Subcutaneous Fat , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...