Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 276(36): 34318-22, 2001 Sep 07.
Article in English | MEDLINE | ID: mdl-11448958

ABSTRACT

We expressed the small subunit of smooth muscle myosin light chain phosphatase (MPs) in Escherichia coli, and have studied its molecular properties as well as its interaction with the targeting subunit (MPt). MPs (M(r) = 18,500) has an anomalously low electrophoretic mobility, running with an apparent M(r) of approximately 21,000 in sodium dodecyl sulfate-gel electrophoresis. CD spectroscopy shows that it is approximately 45% alpha-helix and undergoes a cooperative temperature-induced unfolding with a transition midpoint of 73 degrees C. Limited proteolysis rapidly degrades MPs to a stable C-terminal fragment (M(r) = 10,000) that retains most of the helical content. Rotary shadowing electron microscopy reveals that it is an elongated protein with two domains. Sedimentation velocity measurements show that recombinant MPt (M(r) = 107,000), intact MPs, and the 10-kDa MPs fragment are all dimeric, and that MPs and MPt form a complex with a molar mass consistent with a 1:1 heterodimer. Sequence analysis predicts that regions in the C-terminal portions of both MPs and MPt have high probabilities for coiled coil formation. A synthetic peptide from a region of MPs encompassing residues 77-116 was found to be 100% alpha-helical, dimeric, and formed a complex with MPt with a molecular mass corresponding to a heterodimer. Based on these results, we propose that MPs is an elongated molecule with an N-terminal head and a C-terminal stalk domain. It dimerizes via a coiled coil interaction in the stalk domain, and interacts with MPt via heterodimeric coiled coil formation. Since other proteins with known regulatory function toward MP also have predicted coiled coil regions, our results suggest that these regulatory proteins target MP via the same coiled coil strand exchange mechanism with MPt.


Subject(s)
Muscle, Smooth/chemistry , Phosphoprotein Phosphatases/chemistry , Recombinant Proteins/chemistry , Animals , Binding Sites , Chickens , Circular Dichroism , DNA, Complementary/metabolism , Dimerization , Electrophoresis, Polyacrylamide Gel , Gene Library , Microscopy, Electron , Muscle, Smooth/ultrastructure , Myosin-Light-Chain Phosphatase , Protein Binding , Protein Conformation , Protein Isoforms , Protein Structure, Secondary , Recombinant Proteins/metabolism , Signal Transduction , Ultracentrifugation
2.
J Mol Biol ; 296(3): 899-910, 2000 Feb 25.
Article in English | MEDLINE | ID: mdl-10677290

ABSTRACT

The interaction sites of rabbit skeletal troponin I (TnI) with troponin C (TnC), troponin T (TnT), tropomyosin (Tm) and actin were mapped systematically using nine single cysteine residue TnI mutants with mutation sites at positions 6, 48, 64, 89, 104, 121, 133, 155 or 179 (TnI6, TnI48 etc.). Each mutant was labeled with the heterobifunctional photocrosslinker 4-maleimidobenzophenone (BP-Mal), and incorporated into the TnI.TnC binary complex, the TnI.TnC.TnT ternary troponin (Tn) complex, and the Tn.Tm.F-actin synthetic thin filament. Photocrosslinking reactions carried out in the presence and absence of Ca(2+) yielded the following results: (1) BP-TnI6 photocrosslinked primarily to TnC with a small degree of Ca(2+)-dependence in all the complex forms. (2) BP-TnI48, TnI64 and TnI89 photocrosslinked to TnT with no Ca(2+)-dependence. Photocrosslinking to TnC was reduced in the ternary versus the binary complex. BP-TnI89 also photocrosslinked to actin with higher yields in the absence of Ca(2+) than in its presence. (3) BP-TnI104 and TnI133 photocrosslinked to actin with much higher yields in the absence than in the presence of Ca(2+). (4) BP-TnI121 photocrosslinked to TnC with a small degree of Ca(2+)-dependence, and did not photocrosslink to actin. (5) BP-TnI155 and TnI179 photocrosslinked to TnC, TnT and actin, but all with low yields. All the labeled mutants photocrosslinked to TnC with varying degrees of Ca(2+)-dependence, and none to Tm. These results, along with those published allowed us to construct a structural and functional model of TnI in the Tn complex: in the presence of Ca(2+), residues 1-33 of TnI interact with the C-terminal domain hydrophobic cleft of TnC, approximately 48-89 with TnT, approximately 90-113 with TnC's central helix, approximately 114-125 with TnC's N-terminal domain hydrophobic cleft, and approximately 130-150 with TnC's A-helix. In the absence of Ca(2+), residues approximately 114-125 move out of TnC's N-terminal domain hydrophobic cleft and trigger the movements of residues approximately 89-113 and approximately 130-150 away from TnC and towards actin.


Subject(s)
Benzophenones/metabolism , Cross-Linking Reagents/metabolism , Cysteine/genetics , Maleimides/metabolism , Microfilament Proteins/metabolism , Photosensitizing Agents/metabolism , Troponin I/metabolism , Actins/metabolism , Animals , Binding Sites/drug effects , Calcium/metabolism , Calcium/pharmacology , Cysteine/metabolism , Microfilament Proteins/chemistry , Models, Molecular , Molecular Weight , Muscle, Skeletal , Mutation/genetics , Protein Binding/drug effects , Protein Structure, Tertiary , Rabbits , Structure-Activity Relationship , Tropomyosin/metabolism , Troponin C/chemistry , Troponin C/metabolism , Troponin I/chemistry , Troponin I/genetics , Troponin T/chemistry , Troponin T/metabolism , Ultraviolet Rays
3.
Biochim Biophys Acta ; 1434(2): 296-303, 1999 Oct 12.
Article in English | MEDLINE | ID: mdl-10525148

ABSTRACT

Chicken gizzard smooth muscle myosin light chain phosphatase is composed of a approximately 37 kDa catalytic subunit, a approximately 110 kDa myosin binding or targeting subunit and a approximately 20 kDa subunit (MPs) whose function is as yet undefined. It was reported previously that a cloned chicken gizzard MPs cDNA encodes a protein of 186 amino acids (aa) [Y.H. Chen, M.X. Chen, D.R. Alessi, D.G. Gampbell, C. Shanahan, P. Cohen, P.T.W. Cohen, FEBS Lett. 356 (1994) 51-55]. More recently, we obtained by PCR amplification another MPs cDNA that encodes a protein of only 161 aa [Y. Zhang, K. Mabuchi, T. Tao, Biochim. Biophys. Acta 1343 (1997) 51-58]. In this work we obtained cDNAs corresponding to both sequences using a different set of PCR primers, indicating that the two sequences correspond to isoforms that most likely arose from alternative splicing of the same gene. Using two polyclonal antibodies, one raised against the recombinant 161 aa isoform of chicken gizzard MPs and the other against a C-terminal polypeptide that is present only in the 186 aa isoform, we found that while the 161 aa isoform is the predominant one in chicken gizzard, in chicken aorta it is the 186 aa one; in chicken stomach both isoforms are present, and in mammalian tissues such as ferret and rat only the 186 aa isoform is detected. Furthermore, we purified the MPs associated with the chicken gizzard myosin light chain phosphatase holoenzyme and determined its molecular weight, amino acid composition and six residues of its C-terminal sequence. The results from these analyses showed conclusively that the predominant isoform in chicken gizzard is the 161 aa one.


Subject(s)
Muscle, Smooth/enzymology , Phosphoprotein Phosphatases/chemistry , Amino Acid Sequence , Amino Acids/analysis , Animals , Chickens , DNA, Complementary/chemistry , Ferrets , Gizzard, Avian/enzymology , Immunoblotting , Isoenzymes/chemistry , Isoenzymes/isolation & purification , Molecular Sequence Data , Molecular Weight , Myosin-Light-Chain Phosphatase , Phosphoprotein Phosphatases/isolation & purification , Polymerase Chain Reaction , Rats , Stomach/enzymology
4.
Biochemistry ; 30(30): 7609-14, 1991 Jul 30.
Article in English | MEDLINE | ID: mdl-1906744

ABSTRACT

The highly conserved, buried, Asp 26 in Escherichia coli thioredoxin has a pKa = 7.5, and its titration is associated with a sizable destabilization of the protein [Langsetmo, K., Fuchs, J., & Woodward, C. (1991) Biochemistry (preceding paper in this issue)]. A fit of the experimental pH dependence of thioredoxin stability to a theoretical expression for the pH/stability relation in proteins agrees closely with a pKa value of 7.5 for Asp 26. The agreement between the experimental and theoretical changes in protein stability due to substitution of Asp 26 by alanine is also good. The local structure in the vicinity of Asp 26 in the low-pH crystal structure (with uncharged Asp 26) is hydrophobic, indicating that the aspartate would be highly destabilized. In theoretical calculations, the desolvation penalty for deprotonating Asp 26 in this environment is similar to the total protein folding energy. As a consequence, the Asp 26 pKa would be much greater than 7.5, and/or the protein might not fold. This suggests that a compensating process partially stabilizes the Asp 26 carboxyl group when it is charged. A simple model for this proposed, whereby the Lys 57 side chain rotates to form a salt bridge with Asp 26 when it is deprotonated.


Subject(s)
Aspartic Acid/chemistry , Thioredoxins/chemistry , Circular Dichroism , Escherichia coli , Hydrogen-Ion Concentration , Lysine/chemistry , Models, Chemical , Protein Conformation , Solvents , Thermodynamics
5.
Biochemistry ; 30(30): 7603-9, 1991 Jul 30.
Article in English | MEDLINE | ID: mdl-1854757

ABSTRACT

Aspartic acid 26 in Escherichia coli thioredoxin is located at the bottom of a hydrophobic cavity, near the redox-active disulfide of the active site. Asp 26 is embedded in the protein except for part of the surface of one carboxyl oxygen. The high degree of evolutionary conversion of Asp 26 suggests that it plays a critical role in thioredoxin function. We have determined the pKa of Asp 26 by a novel electrophoretic method based on the relative electrophoretic mobilities of wild-type thioredoxin and of D26A thioredoxin (with Asp 26 replaced by alanine). The pKa of Asp 26 determined by this technique is 7.5, more than 3 units above the pKa of a solvated carboxyl side chain. The titration of Asp 26 is thermodynamically linked to the stability of thioredoxin. As expected if thioredoxin stability depends on the ionization state of Asp 26, delta Go WT, the free energy of the cooperative denaturation reaction of wild-type thioredoxin by guanidine hydrochloride, varies with pH in a sigmoidal fashion in the vicinity of pH 7.5. Over the same pH range, the free energy for D26A folding, delta Go D26A, is pH independent and D26A is highly stabilized compared to wild type. From the thermodynamic cycle describing the linkage of Asp 26 titration to thioredoxin stability, the difference in free energy between wild-type thioredoxin with protonated Asp 26 and wild-type thioredoxin with deprotonated Asp 26, delta delta Go (COOH----COO-), is calculated to be 4.9 kcal/mol.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Aspartic Acid/chemistry , Thioredoxins/chemistry , Alanine/chemistry , Amino Acid Sequence , Binding Sites , Buffers , Cysteine/chemistry , Disulfides/chemistry , Electrophoresis, Polyacrylamide Gel , Escherichia coli , Hydrogen-Ion Concentration , Models, Molecular , Molecular Sequence Data , Oxidation-Reduction , Proline/chemistry , Protein Conformation , Sulfhydryl Compounds/chemistry
6.
Biochemistry ; 28(8): 3211-20, 1989 Apr 18.
Article in English | MEDLINE | ID: mdl-2663067

ABSTRACT

The urea-induced denaturation of Escherichia coli thioredoxin and thioredoxin variants has been examined by electrophoresis on urea gradient slab gels by the method of Creighton [Creighton, T. (1986) Methods Enzymol. 131, 156-172]. Thioredoxin has only two cysteine residues, and these form a redox-active disulfide at the active site. Oxidized thioredoxin-S2 and reduced thioredoxin-(SH)2 each show two folded isomers with a large difference in stability to urea denaturation. The difference in stability is greater for the isomers of oxidized than for the isomers of reduced thioredoxin. At 2 degrees C, the urea concentrations at the denaturation midpoint are approximately 8 and 4.3 M for the oxidized isomers and 4.8 and 3.7 M for the reduced isomers. The difference between the gel patterns of samples applied in native versus denaturing buffer, and at 2 and 25 degrees C, is characteristic for the involvement of a cis-proline-trans-proline isomerization. The data very strongly suggest that the two folded forms of different stabilities correspond to the cis and trans isomers of the highly conserved Pro 76 peptide bond, which is cis in the crystal structure of oxidized thioredoxin. Urea gel experiments with the mutant thioredoxin P76A, with alanine substituted for proline at position 76, corroborate this interpretation. The electrophoretic banding pattern diagnostic for an involvement of proline isomerization in urea denaturation is not observed for oxidized P76A. In broad estimates of delta G degree for the native-denatured transition, the difference in delta G degree (no urea) between the putative cis and trans isomers of the Ile 75-Pro 76 peptide bond is approximately 3 kcal/mol for oxidized thioredoxin and approximately 1.5 kcal/mol for reduced thioredoxin. Since cis oxidized thioredoxin is much more stable than trans, folded oxidized thioredoxin is essentially all cis. In folded reduced thioredoxin, cis and trans interconvert slowly, on the minute time scale at 2 and 25 degrees C. In the absence of urea, the folded reduced thioredoxin is less than a few percent trans. Three additional mutants with additions or substitutions at the active site also show electrophoresis banding patterns consistent with a difference in stability between cis and trans isomers.


Subject(s)
Bacterial Proteins , Thioredoxins , Bacterial Proteins/genetics , Escherichia coli/genetics , Mutation , Oxidation-Reduction , Protein Conformation , Protein Denaturation , Stereoisomerism , Thioredoxins/genetics , Urea
SELECTION OF CITATIONS
SEARCH DETAIL
...