Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165686, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31953215

ABSTRACT

Mitochondrial dysfunctions are linked to a series of neurodegenerative human conditions, including Parkinson's disease, schizophrenia, optic neuropathies, and glaucoma. Recently, a series of studies have pointed mitotherapy - exogenous mitochondria transplant - as a promising way to attenuate the progression of neurologic disorders; however, the neuroprotective and pro-regenerative potentials of isolated mitochondria in vivo have not yet been elucidated. In this present work, we tested the effects of transplants of active (as well-coupled organelles were named), liver-isolated mitochondria on the survival of retinal ganglion cells and axonal outgrowth after optic nerve crush. Our data show that intravitreally transplanted, full active mitochondria incorporate into the retina, improve its oxidative metabolism and electrophysiological activity at 1 day after transplantation. Moreover, mitotherapy increases cell survival in the ganglion cell layer at 14 days, and leads to a higher number of axons extending beyond the injury site at 28 days; effects that are dependent on the organelles' structural integrity. Together, our findings support mitotherapy as a promising approach for future therapeutic interventions upon central nervous system damage.


Subject(s)
Mitochondria/transplantation , Nerve Regeneration , Optic Nerve Injuries/therapy , Optic Nerve/pathology , Retinal Ganglion Cells/pathology , Animals , Cell Fractionation , Cell Survival/physiology , Disease Models, Animal , Female , Humans , Intravitreal Injections , Liver/cytology , Male , Optic Nerve Injuries/pathology , Oxidative Stress/physiology , Rats
2.
Sci Rep ; 9(1): 16286, 2019 11 08.
Article in English | MEDLINE | ID: mdl-31705136

ABSTRACT

Glaucoma is a neurodegenerative disorder characterized by the progressive functional impairment and degeneration of the retinal ganglion cells (RGCs) and their axons, and is the leading cause of irreversible blindness worldwide. Current management of glaucoma is based on reduction of high intraocular pressure (IOP), one of its most consistent risk factors, but the disease proceeds in almost half of the patients despite such treatments. Several experimental models of glaucoma have been developed in rodents, most of which present shortcomings such as high surgical invasiveness, slow learning curves, damage to the transparency of the optic media which prevents adequate functional assessment, and variable results. Here we describe a novel and simple method to induce ocular hypertension in pigmented rats, based on low-temperature cauterization of the whole circumference of the limbal vascular plexus, a major component of aqueous humor drainage and easily accessible for surgical procedures. This simple, low-cost and efficient method produced a reproducible subacute ocular hypertension with full clinical recovery, followed by a steady loss of retinal ganglion cells and optic axons, accompanied by functional changes detected both by electrophysiological and behavioral methods.


Subject(s)
Disease Models, Animal , Disease Susceptibility , Glaucoma/etiology , Glaucoma/metabolism , Animals , Biomarkers , Cell Death , Electroretinography , Fluorescent Antibody Technique , Glaucoma/diagnosis , Immunohistochemistry , Intraocular Pressure , Nerve Degeneration , Psychomotor Performance , Rats , Retina/metabolism , Retina/pathology , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology
3.
Invest Ophthalmol Vis Sci ; 59(15): 5876-5884, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30543343

ABSTRACT

Purpose: To determine whether cerebrospinal fluid (CSF) entry into the optic nerve is altered in glaucoma. Methods: Fluorescent 10-kDa dextran tracer was injected into the CSF of 2-month-old (n = 9) and 10-month-old DBA/2J glaucoma mice (n = 8) and age-matched controls (C57Bl/6; n = 8 each group). Intraocular pressure (IOP) was measured in all mice before tracer injection into CSF. Tracer distribution was assessed using confocal microscopy of optic nerve cross-sections of mice killed 1 hour after injection. Paravascular tracer distribution in the optic nerve was studied in relation to isolectin-stained blood vessels. Tracer intensity and cross-sectional area in the laminar optic nerve were quantitatively assessed in all four groups and statistically compared. Aquaporin 4 (AQP4) and retinal ganglion cell axonal phosphorylated neurofilament (pNF) were evaluated using immunofluorescence and confocal microscopy. Results: IOP was elevated in 10-month-old glaucoma mice compared with age-matched controls. One hour after tracer injection, controls showed abundant CSF tracer in the optic nerve subarachnoid space and within the nerve in paravascular spaces surrounding isolectin-labeled blood vessels. CSF tracer intensity and signal distribution in the optic nerve were significantly decreased in 10-month-old glaucoma mice compared with age-matched controls (P = 0.0008 and P = 0.0033, respectively). AQP4 immunoreactivity was similar in 10-month-old DBA and age-matched control mice. Half of the 10-month-old DBA mice (n = 4/8) showed a decrease in pNF immunoreactivity compared to controls. Altered pNF staining was seen only in DBA mice lacking CSF tracer at the laminar optic nerve (n = 4/5). Conclusions: This study provides the first evidence that CSF entry into the optic nerve is impaired in glaucoma. This finding points to a novel CSF-related mechanism that may help to understand optic nerve damage in glaucoma.


Subject(s)
Cerebrospinal Fluid/metabolism , Glaucoma/metabolism , Optic Nerve Diseases/metabolism , Animals , Aquaporin 4/metabolism , Axons/metabolism , Axons/pathology , Carbocyanines/metabolism , Female , Fluorescent Antibody Technique, Indirect , Fluorescent Dyes/metabolism , Glaucoma/pathology , Intraocular Pressure/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Microscopy, Confocal , Neurofilament Proteins/metabolism , Optic Nerve Diseases/pathology , Phosphorylation , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...