Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Natl Sci Rev ; 11(5): nwad318, 2024 May.
Article in English | MEDLINE | ID: mdl-38577673

ABSTRACT

This Perspective presents the Modular-Integrative Modeling approach, a novel framework in neuroscience for developing brain models that blend biological realism with functional performance to provide a holistic view on brain function in interaction with the body and environment.

2.
Camb Q Healthc Ethics ; : 1-10, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36624620

ABSTRACT

Human decisions are increasingly supported by decision support systems (DSS). Humans are required to remain "on the loop," by monitoring and approving/rejecting machine recommendations. However, use of DSS can lead to overreliance on machines, reducing human oversight. This paper proposes "reflection machines" (RM) to increase meaningful human control. An RM provides a medical expert not with suggestions for a decision, but with questions that stimulate reflection about decisions. It can refer to data points or suggest counterarguments that are less compatible with the planned decision. RMs think against the proposed decision in order to increase human resistance against automation complacency. Building on preliminary research, this paper will (1) make a case for deriving a set of design requirements for RMs from EU regulations, (2) suggest a way how RMs could support decision-making, (3) describe the possibility of how a prototype of an RM could apply to the medical domain of chronic low back pain, and (4) highlight the importance of exploring an RM's functionality and the experiences of users working with it.

3.
Front Neurorobot ; 16: 896229, 2022.
Article in English | MEDLINE | ID: mdl-35966370

ABSTRACT

Computational models of visual attention in artificial intelligence and robotics have been inspired by the concept of a saliency map. These models account for the mutual information between the (current) visual information and its estimated causes. However, they fail to consider the circular causality between perception and action. In other words, they do not consider where to sample next, given current beliefs. Here, we reclaim salience as an active inference process that relies on two basic principles: uncertainty minimization and rhythmic scheduling. For this, we make a distinction between attention and salience. Briefly, we associate attention with precision control, i.e., the confidence with which beliefs can be updated given sampled sensory data, and salience with uncertainty minimization that underwrites the selection of future sensory data. Using this, we propose a new account of attention based on rhythmic precision-modulation and discuss its potential in robotics, providing numerical experiments that showcase its advantages for state and noise estimation, system identification and action selection for informative path planning.

4.
PLoS Comput Biol ; 18(6): e1010095, 2022 06.
Article in English | MEDLINE | ID: mdl-35714105

ABSTRACT

The field of motor control has long focused on the achievement of external goals through action (e.g., reaching and grasping objects). However, recent studies in conditions of multisensory conflict, such as when a subject experiences the rubber hand illusion or embodies an avatar in virtual reality, reveal the presence of unconscious movements that are not goal-directed, but rather aim at resolving multisensory conflicts; for example, by aligning the position of a person's arm with that of an embodied avatar. This second, conflict-resolution imperative of movement control did not emerge in classical studies of motor adaptation and online corrections, which did not allow movements to reduce the conflicts; and has been largely ignored so far in formal theories. Here, we propose a model of movement control grounded in the theory of active inference that integrates intentional and conflict-resolution imperatives. We present three simulations showing that the active inference model is able to characterize movements guided by the intention to achieve an external goal, by the necessity to resolve multisensory conflict, or both. Furthermore, our simulations reveal a fundamental difference between the (active) inference underlying intentional and conflict-resolution imperatives by showing that it is driven by two different (model and sensory) kinds of prediction errors. Finally, our simulations show that when movement is only guided by conflict resolution, the model incorrectly infers that is velocity is zero, as if it was not moving. This result suggests a novel speculative explanation for the fact that people are unaware of their subtle compensatory movements to avoid multisensory conflict. Furthermore, it can potentially help shed light on deficits of motor awareness that arise in psychopathological conditions.


Subject(s)
Illusions , Negotiating , Hand , Hand Strength , Humans , Movement , Psychomotor Performance
5.
Entropy (Basel) ; 24(3)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35327872

ABSTRACT

Recent advances in neuroscience have characterised brain function using mathematical formalisms and first principles that may be usefully applied elsewhere. In this paper, we explain how active inference-a well-known description of sentient behaviour from neuroscience-can be exploited in robotics. In short, active inference leverages the processes thought to underwrite human behaviour to build effective autonomous systems. These systems show state-of-the-art performance in several robotics settings; we highlight these and explain how this framework may be used to advance robotics.

6.
Sci Rep ; 11(1): 22844, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34819563

ABSTRACT

The perception of our body in space is flexible and manipulable. The predictive brain hypothesis explains this malleability as a consequence of the interplay between incoming sensory information and our body expectations. However, given the interaction between perception and action, we might also expect that actions would arise due to prediction errors, especially in conflicting situations. Here we describe a computational model, based on the free-energy principle, that forecasts involuntary movements in sensorimotor conflicts. We experimentally confirm those predictions in humans using a virtual reality rubber-hand illusion. Participants generated movements (forces) towards the virtual hand, regardless of its location with respect to the real arm, with little to no forces produced when the virtual hand overlaid their physical hand. The congruency of our model predictions and human observations indicates that the brain-body is generating actions to reduce the prediction error between the expected arm location and the new visual arm. This observed unconscious mechanism is an empirical validation of the perception-action duality in body adaptation to uncertain situations and evidence of the active component of predictive processing.


Subject(s)
Conflict, Psychological , Hand/physiology , Illusions , Models, Psychological , Movement , Sensorimotor Cortex/physiology , Space Perception , Visual Perception , Feedback, Sensory , Humans , Perceptual Masking , Proprioception
8.
Neural Netw ; 122: 338-363, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31760370

ABSTRACT

This survey presents the most relevant neural network models of autism spectrum disorder and schizophrenia, from the first connectionist models to recent deep neural network architectures. We analyzed and compared the most representative symptoms with its neural model counterpart, detailing the alteration introduced in the network that generates each of the symptoms, and identifying their strengths and weaknesses. We additionally cross-compared Bayesian and free-energy approaches, as they are widely applied to model psychiatric disorders and share basic mechanisms with neural networks. Models of schizophrenia mainly focused on hallucinations and delusional thoughts using neural dysconnections or inhibitory imbalance as the predominating alteration. Models of autism rather focused on perceptual difficulties, mainly excessive attention to environment details, implemented as excessive inhibitory connections or increased sensory precision. We found an excessively tight view of the psychopathologies around one specific and simplified effect, usually constrained to the technical idiosyncrasy of the used network architecture. Recent theories and evidence on sensorimotor integration and body perception combined with modern neural network architectures could offer a broader and novel spectrum to approach these psychopathologies. This review emphasizes the power of artificial neural networks for modeling some symptoms of neurological disorders but also calls for further developing of these techniques in the field of computational psychiatry.


Subject(s)
Autism Spectrum Disorder/physiopathology , Connectome , Neural Networks, Computer , Schizophrenia/physiopathology , Bayes Theorem , Humans
9.
Sensors (Basel) ; 14(8): 14131-79, 2014 Aug 04.
Article in English | MEDLINE | ID: mdl-25093345

ABSTRACT

The minimum time search in uncertain domains is a searching task, which appears in real world problems such as natural disasters and sea rescue operations, where a target has to be found, as soon as possible, by a set of sensor-equipped searchers. The automation of this task, where the time to detect the target is critical, can be achieved by new probabilistic techniques that directly minimize the Expected Time (ET) to detect a dynamic target using the observation probability models and actual observations collected by the sensors on board the searchers. The selected technique, described in algorithmic form in this paper for completeness, has only been previously partially tested with an ideal binary detection model, in spite of being designed to deal with complex non-linear/non-differential sensorial models. This paper covers the gap, testing its performance and applicability over different searching tasks with searchers equipped with different complex sensors. The sensorial models under test vary from stepped detection probabilities to continuous/discontinuous differentiable/non-differentiable detection probabilities dependent on distance, orientation, and structured maps. The analysis of the simulated results of several static and dynamic scenarios performed in this paper validates the applicability of the technique with different types of sensor models.


Subject(s)
Automation/instrumentation , Uncertainty , Algorithms , Models, Theoretical , Nonlinear Dynamics , Probability
10.
Sensors (Basel) ; 12(3): 2487-518, 2012.
Article in English | MEDLINE | ID: mdl-22736962

ABSTRACT

This paper presents a state of the art of the estimation algorithms dealing with Out-of-Sequence (OOS) measurements for non-linearly modeled systems. The state of the art includes a critical analysis of the algorithm properties that takes into account the applicability of these techniques to autonomous mobile robot navigation based on the fusion of the measurements provided, delayed and OOS, by multiple sensors. Besides, it shows a representative example of the use of one of the most computationally efficient approaches in the localization module of the control software of a real robot (which has non-linear dynamics, and linear and non-linear sensors) and compares its performance against other approaches. The simulated results obtained with the selected OOS algorithm shows the computational requirements that each sensor of the robot imposes to it. The real experiments show how the inclusion of the selected OOS algorithm in the control software lets the robot successfully navigate in spite of receiving many OOS measurements. Finally, the comparison highlights that not only is the selected OOS algorithm among the best performing ones of the comparison, but it also has the lowest computational and memory cost.

SELECTION OF CITATIONS
SEARCH DETAIL
...