Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Metabolites ; 13(3)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36984842

ABSTRACT

Environmental metabolomics is a promising approach to study pollutant impacts to target organisms in both terrestrial and aquatic environments. To this end, both nuclear magnetic resonance (NMR)- and mass spectrometry (MS)-based methods are used to profile amino acids in different environmental metabolomic studies. However, these two methods have not been compared directly which is an important consideration for broader comparisons in the environmental metabolomics field. We compared the quantification of 18 amino acids in the tissue extracts of Daphnia magna, a common model organism used in both ecotoxicology and ecology, using both 1H NMR spectroscopy and liquid chromatography with tandem MS (LC-MS/MS). 1H NMR quantification of amino acids agreed with the LC-MS/MS quantification for 17 of 18 amino acids measured. We also tested both quantitative methods in a D. magna sub-lethal exposure study to copper and lithium. Again, both NMR and LC-MS/MS measurements showed agreement. We extended our analyses with extracts from the earthworm Eisenia fetida and the plant model Nicotiana tabacum. The concentrations of amino acids by both 1H NMR and LC-MS/MS, agreed and demonstrated the robustness of both techniques for quantitative metabolomics. These findings demonstrate the compatibility of these two analytical platforms for amino acid profiling in environmentally relevant model organisms and emphasizes that data from either method is robust for comparisons across studies to further build the knowledge base related to pollutant exposure impacts and toxic responses of diverse environmental organisms.

2.
Environ Sci Pollut Res Int ; 26(18): 18846-18855, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31065987

ABSTRACT

Eisenia fetida earthworms were exposed to sub-lethal levels of imidacloprid for 48 h via contact filter paper tests and soil tests. After the exposure, 1H nuclear magnetic resonance (NMR) metabolomics was used to measure earthworm sub-lethal responses by analyzing the changes in the polar metabolite profile. Maltose, glucose, malate, lactate/threonine, myo-inositol, glutamate, arginine, lysine, tyrosine, leucine, and phenylalanine relative concentrations were altered with imidacloprid exposure in soil. In addition to these metabolites (excluding leucine and phenylalanine), fumarate, ATP, inosine, betaine, scyllo-inositol, glutamine, valine, tryptophan, alanine, tyrosine, and isoleucine relative concentrations shifted with imidacloprid exposure during contact tests. Metabolite changes in E. fetida earthworms exposed to imidacloprid showed a non-linear concentration response and an upregulation in gluconeogenesis. Overall, imidacloprid exposure in soil induces a less pronounced response in metabolites glucose, maltose, fumarate, adenosine-5'-triphosphate (ATP), inosine, scyllo-inositol, lactate/threonine, and tyrosine in comparison to the response observed via contact tests. Thus, our study highlights that tests in soil can result in a different metabolic response in E. fetida and demonstrates the importance of different modes of exposure and the extent of metabolic perturbation in earthworms. Our study also emphasizes the underlying metabolic disruption of earthworms after acute sub-lethal exposure to imidacloprid. These observations should be further examined in different soil types to assess the sub-lethal toxicity of imidacloprid to soil-dwelling earthworms.


Subject(s)
Metabolome/drug effects , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Oligochaeta/drug effects , Soil Pollutants/toxicity , Soil/chemistry , Animals , Dose-Response Relationship, Drug , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Metabolomics , Neonicotinoids/analysis , Nitro Compounds/analysis , Oligochaeta/metabolism , Soil Pollutants/analysis
3.
Metabolites ; 7(2)2017 Apr 14.
Article in English | MEDLINE | ID: mdl-28420092

ABSTRACT

¹H nuclear magnetic resonance (NMR)-based metabolomics was used to characterize the response of Daphnia magna after sub-lethal exposure to perfluorooctane sulfonate (PFOS), a commonly found environmental pollutant in freshwater ecosystems. Principal component analysis (PCA) scores plots showed significant separation in the exposed samples relative to the controls. Partial least squares (PLS) regression analysis revealed a strong linear correlation between the overall metabolic response and PFOS exposure concentration. More detailed analysis showed that the toxic mode of action is metabolite-specific with some metabolites exhibiting a non-monotonic response with higher PFOS exposure concentrations. Our study indicates that PFOS exposure disrupts various energy metabolism pathways and also enhances protein degradation. Overall, we identified several metabolites that are sensitive to PFOS exposure and may be used as bioindicators of D. magna health. In addition, this study also highlights the important utility of environmental metabolomic methods when attempting to elucidate acute and sub-lethal pollutant stressors on keystone organisms such as D. magna.

4.
Ecotoxicol Environ Saf ; 120: 48-58, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26024814

ABSTRACT

The enhanced production and environmental release of Buckminsterfullerene (C60) nanoparticles will likely increase the exposure and risk to soil dwelling organisms. We used (1)H NMR-based metabolomics to investigate the response of Eisenia fetida earthworms to sub-lethal C60 nanoparticle exposure in both contact and soil tests. Principal component analysis of (1)H NMR data showed clear separation between controls and exposed earthworms after just 2 days of exposure, however as exposure time increased the separation decreased in soil but increased in contact tests suggesting potential adaptation during soil exposure. The amino acids leucine, valine, isoleucine and phenylalanine, the nucleoside inosine, and the sugars glucose and maltose emerged as potential bioindicators of exposure to C60 nanoparticles. The significant responses observed in earthworms using NMR-based metabolomics after exposure to very low concentrations of C60 nanoparticles suggests the need for further investigations to better understand and predict their sub-lethal toxicity.


Subject(s)
Fullerenes/toxicity , Metabolomics , Nanoparticles/toxicity , Oligochaeta/drug effects , Animals , Magnetic Resonance Spectroscopy , Oligochaeta/metabolism , Principal Component Analysis , Soil/chemistry , Soil Pollutants/toxicity
5.
Magn Reson Chem ; 53(9): 745-53, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25891518

ABSTRACT

Nuclear magnetic resonance (NMR) is the primary platform used in high-throughput environmental metabolomics studies because its non-selectivity is well suited for non-targeted approaches. However, standard NMR probes may limit the use of NMR-based metabolomics for tiny organisms because of the sample volumes required for routine metabolic profiling. Because of this, keystone ecological species, such as the water flea Daphnia magna, are not commonly studied because of the analytical challenges associated with NMR-based approaches. Here, the use of a 1.7-mm NMR microprobe in analyzing tissue extracts from D. magna is tested. Three different extraction procedures (D2O-based buffer, Bligh and Dyer, and acetonitrile : methanol : water) were compared in terms of the yields and breadth of polar metabolites. The D2O buffer extraction yielded the most metabolites and resulted in the best reproducibility. Varying amounts of D. magna dry mass were extracted to optimize metabolite isolation from D. magna tissues. A ratio of 1-1.5-mg dry mass to 40 µl of extraction solvent provided excellent signal-to-noise and spectral resolution using (1)H NMR. The metabolite profile of a single daphnid was also investigated (approximately 0.2 mg). However, the signal-to-noise of the (1)H NMR was considerably lower, and while feasible for select applications would likely not be appropriate for high-throughput NMR-based metabolomics. Two-dimensional NMR experiments on D. magna extracts were also performed using the 1.7-mm NMR probe to confirm (1)H NMR metabolite assignments. This study provides an NMR-based analytical framework for future metabolomics studies that use D. magna in ecological and ecotoxicity studies.


Subject(s)
Amino Acids/analysis , Daphnia/chemistry , Metabolomics/instrumentation , Proton Magnetic Resonance Spectroscopy/instrumentation , Acetonitriles/chemistry , Animals , Daphnia/metabolism , Deuterium Oxide/chemistry , Ethanol/chemistry , Liquid Phase Microextraction/methods , Metabolomics/methods , Proton Magnetic Resonance Spectroscopy/methods , Reproducibility of Results , Signal-To-Noise Ratio , Water/chemistry
6.
Physiol Biochem Zool ; 88(1): 43-52, 2015.
Article in English | MEDLINE | ID: mdl-25590592

ABSTRACT

Poor diet quality frequently constrains the growth and reproduction of primary consumers, altering their population dynamics, interactions in food webs, and contributions to ecosystem services such as nutrient cycling. The identification and measurement of an animal's nutritional state are thus central to studying the connections between diet and animal ecology. Here we show how the nutritional state of a freshwater invertebrate, Daphnia magna, can be determined by analyzing its endogenous metabolites using hydrogen nuclear magnetic resonance-based metabolomics. With a multivariate analysis, we observed the differentiation of the metabolite composition of animals grown under control conditions (good food and no environmental stress), raised on different diets (low quantity, nitrogen limited, and phosphorus limited), and exposed to two common environmental stressors (bacterial infection and salt stress). We identified 18 metabolites that were significantly different between control animals and at least one limiting food type or environmental stressor. The unique metabolite responses of animals caused by inadequate nutrition and environmental stress are reflective of dramatic and distinctive effects that each stressor has on animal metabolism. Our results suggest that dietary-specific induced changes in metabolite composition of animal consumers hold considerable promise as indicators of nutritional stress and will be invaluable to future studies of animal nutrition.


Subject(s)
Animal Nutritional Physiological Phenomena , Daphnia/metabolism , Diet , Stress, Physiological , Animals , Bacterial Infections/metabolism , Daphnia/microbiology , Nitrogen , Phosphorus, Dietary , Salinity
7.
Chemosphere ; 93(2): 331-7, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23732010

ABSTRACT

Metal and metalloid contamination constitutes a major concern in aquatic ecosystems. Thus it is important to find rapid and reliable indicators of metal stress to aquatic organisms. In this study, we tested the use of (1)H nuclear magnetic resonance (NMR) - based metabolomics to examine the response of Daphnia magna neonates after a 48h exposure to sub-lethal concentrations of arsenic (49µgL(-1)), copper (12.4µgL(-1)) or lithium (1150µgL(-1)). Metabolomic responses for all conditions were compared to a control using principal component analysis (PCA) and metabolites that contributed to the variation between the exposures and the control condition were identified and quantified. The PCA showed that copper and lithium exposures result in statistically significant metabolite variations from the control. Contributing to this variation was a number of amino acids such as: phenylalanine, leucine, lysine, glutamine, glycine, alanine, methionine and glutamine as well as the nucleobase uracil and osmolyte glycerophosphocholine. The similarities in metabolome changes suggest that lithium has an analogous mode of toxicity to that of copper, and may be impairing energy production and ionoregulation. The PCA also showed that arsenic exposure resulted in a metabolic shift in comparison to the control population but this change was not statistically significant. However, significant changes in specific metabolites such as alanine and lysine were observed, suggesting that energy metabolism is indeed disrupted. This research demonstrates that (1)H NMR-based metabolomics is a viable platform for discerning metabolomic changes and mode of toxicity of D. magna in response to metal stressors in the environment.


Subject(s)
Arsenic/toxicity , Copper/toxicity , Daphnia/drug effects , Daphnia/metabolism , Lithium/toxicity , Metabolomics/methods , Water Pollutants, Chemical/toxicity , Animals , Biomarkers/metabolism , Dose-Response Relationship, Drug , Magnetic Resonance Spectroscopy , Principal Component Analysis
8.
Metabolites ; 3(3): 718-40, 2013 Aug 27.
Article in English | MEDLINE | ID: mdl-24958147

ABSTRACT

1H NMR-based metabolomics was used to measure the response of Eisenia fetida earthworms after exposure to sub-lethal concentrations of perfluorooctane sulfonate (PFOS) in soil. Earthworms were exposed to a range of PFOS concentrations (five, 10, 25, 50, 100 or 150 mg/kg) for two, seven and fourteen days. Earthworm tissues were extracted and analyzed by 1H NMR. Multivariate statistical analysis of the metabolic response of E. fetida to PFOS exposure identified time-dependent responses that were comprised of two separate modes of action: a non-polar narcosis type mechanism after two days of exposure and increased fatty acid oxidation after seven and fourteen days of exposure. Univariate statistical analysis revealed that 2-hexyl-5-ethyl-3-furansulfonate (HEFS), betaine, leucine, arginine, glutamate, maltose and ATP are potential indicators of PFOS exposure, as the concentrations of these metabolites fluctuated significantly. Overall, NMR-based metabolomic analysis suggests elevated fatty acid oxidation, disruption in energy metabolism and biological membrane structure and a possible interruption of ATP synthesis. These conclusions obtained from analysis of the metabolic profile in response to sub-lethal PFOS exposure indicates that NMR-based metabolomics is an excellent discovery tool when the mode of action (MOA) of contaminants is not clearly defined.

9.
Environ Pollut ; 159(10): 2845-51, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21620543

ABSTRACT

(1)H NMR-based metabolomics was used to examine the response of the earthworm Eisenia fetida after exposure to sub-lethal concentrations of phenanthrene over time. Earthworms were exposed to 0.025 mg/cm(2) of phenanthrene (1/64th of the LC(50)) via contact tests over four days. Earthworm tissues were extracted using a mixture of chloroform, methanol and water, resulting in polar and non-polar fractions that were analyzed by (1)H NMR after one, two, three and four days. NMR-based metabolomic analyses revealed heightened E. fetida responses with longer phenanthrene exposure times. Amino acids alanine and glutamate, the sugar maltose, the lipids cholesterol and phosphatidylcholine emerged as potential indicators of phenanthrene exposure. The conversion of succinate to fumarate in the Krebs cycle was also interrupted by phenanthrene. Therefore, this study shows that NMR-based metabolomics is a powerful tool for elucidating time-dependent relationships in addition to the mode of toxicity of phenanthrene in earthworm exposure studies.


Subject(s)
Oligochaeta/drug effects , Phenanthrenes/toxicity , Soil Pollutants/toxicity , Animals , Magnetic Resonance Spectroscopy , Metabolome , Metabolomics , Oligochaeta/metabolism , Principal Component Analysis
10.
Chemosphere ; 83(8): 1096-101, 2011 May.
Article in English | MEDLINE | ID: mdl-21316730

ABSTRACT

¹H NMR metabolomics can be used to assess the sub-lethal toxicity of contaminants to earthworms by identifying alterations in the metabolic profiles of contaminant- exposed earthworms in contrast to those of healthy (control) individuals. In support of this method this study sought to better characterize the baseline metabolic profile of healthy, mature earthworms of the species, Eisenia fetida, which is recommended for both acute and sub-lethal toxicity testing for soil contaminants. Profiles of D(2)O-buffer extracted metabolites were determined using (1)H NMR spectroscopy and both inter-individual metabolic variability and pair-wise metabolic correlations were assessed. The control earthworm extracts exhibited low overall inter-individual metabolic variability, with a spectrum-wide median relative standard deviation (%RSD=standard deviation/mean×100) of 14%, which suggests that the metabolic profile of E. fetida earthworms is well controlled in laboratory conditions and supports further use of this organism in environmental metabolomics research. In addition, strong positive correlations were detected between the levels of maltose, betaine, glycine, and glutamate as well as between the levels of lactate, valine, leucine, alanine, lysine, tyrosine, and phenylalanine which had not previously been reported. Since comparison of pair-wise metabolic correlations between control and treated organisms can reveal changes in the underlying pattern of biochemical relationships between the metabolites, identification of these significant metabolic correlations in control earthworms provides an additional characteristic that may be applied to delineate between control and treated earthworms in future NMR-based metabolomic studies.


Subject(s)
Metabolome , Oligochaeta/metabolism , Animals , Magnetic Resonance Spectroscopy , Metabolomics , Models, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL
...