Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
J Org Chem ; 88(19): 13490-13503, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37748101

ABSTRACT

Proanthocyanidins (PACs) are complex flavan-3-ol polymers with stunning chemical complexity due to oxygenation patterns, oxidative phenolic ring linkages, and intricate stereochemistry of their heterocycles and inter-flavan linkages. Being promising candidates for dental restorative biomaterials, trace analysis of dentin bioactive cinnamon PACs now yielded novel trimeric (1 and 2) and tetrameric (3) PACs with unprecedented o- and p-benzoquinone motifs (benzoquinonoid PACs). Challenges in structural characterization, especially their absolute configuration, prompted the development of a new synthetic-analytical approach involving comprehensive spectroscopy, including NMR with quantum mechanics-driven 1H iterative functionalized spin analysis (HifSA) plus experimental and computational electronic circular dichroism (ECD). Vital stereochemical information was garnered from synthesizing 4-(2,5-benzoquinone)flavan-3-ols and a truncated analogue of trimer 2 as ECD models. Discovery of the first natural benzoquinonoid PACs provides new evidence to the experimentally elusive PAC biosynthesis as their formation requires two oxidative post-oligomerizational modifications (POMs) that are distinct and occur downstream from both quinone-methide-driven oligomerization and A-type linkage formation. While Nature is known to achieve structural diversity of many major compound classes by POMs, this is the first indication of PACs also following this common theme.


Subject(s)
Proanthocyanidins , Proanthocyanidins/chemistry , Phenols , Magnetic Resonance Spectroscopy , Circular Dichroism
2.
Phytochemistry ; 214: 113789, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37482264

ABSTRACT

In botanical extracts, highly abundant constituents can mask or dilute the effects of other, and often, more relevant biologically active compounds. To facilitate the rational chemical and biological assessment of these natural products with wide usage in human health, we introduced the DESIGNER approach of Depleting and Enriching Selective Ingredients to Generate Normalized Extract Resources. The present study applied this concept to clinical Red Clover Extract (RCE) and combined phytochemical and biological methodology to help rationalize the utility of RCE supplements for symptom management in postmenopausal women. Previous work has demonstrated that RCE reduces estrogen detoxification pathways in breast cancer cells (MCF-7) and, thus, may serve to negatively affect estrogen metabolism-induced chemical carcinogenesis. Clinical RCE contains ca. 30% of biochanin A and formononetin, which potentially mask activities of less abundant compounds. These two isoflavonoids are aryl hydrocarbon receptor (AhR) agonists that activate P450 1A1, responsible for estrogen detoxification, and P450 1B1, producing genotoxic estrogen metabolites in female breast cells. Clinical RCE also contains the potent phytoestrogen, genistein, that downregulates P450 1A1, thereby reducing estrogen detoxification. To identify less abundant bioactive constituents, countercurrent separation (CCS) of a clinical RCE yielded selective lipophilic to hydrophilic metabolites in six enriched DESIGNER fractions (DFs 01-06). Unlike solid-phase chromatography, CCS prevented any potential loss of minor constituents or residual complexity (RC) and enabled the polarity-based enrichment of certain constituents. Systematic analysis of estrogen detoxification pathways (ERα-degradation, AhR activation, CYP1A1/CYP1B1 induction and activity) of the DFs uncovered masked bioactivity of minor/less abundant constituents including irilone. These data will allow the optimization of RCE with respect to estrogen detoxification properties. The DFs revealed distinct biological activities between less abundant bioactives. The present results can inspire future carefully designed extracts with phytochemical profiles that are optimized to increase in estrogen detoxification pathways and, thereby, promote resilience in women with high-risk for breast cancer. The DESIGNER approach helps to establish links between complex chemical makeup, botanical safety and possible efficacy parameters, yields candidate DFs for (pre)clinical studies, and reveals the contribution of minor phytoconstituents to the overall safety and bioactivity of botanicals, such as resilience promoting activities relevant to women's health.


Subject(s)
Breast Neoplasms , Isoflavones , Trifolium , Female , Humans , Trifolium/chemistry , Trifolium/metabolism , Isoflavones/pharmacology , Isoflavones/metabolism , Estrogens , Plant Extracts/pharmacology , Plant Extracts/chemistry , Breast Neoplasms/drug therapy
3.
J Nat Prod ; 86(2): 256-263, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36744762

ABSTRACT

Monoterpenoids are integral to the chemical composition of the widely used adaptogenic dietary supplement Rhodiola rosea. The present study expands the chemical space and stereochemical information about these taxon-specific constituents from the isolation and characterization of five geraniol-derived glucosides, 1-5. While 1 and 2 exhibited almost identical NMR spectra and shared the same 2D structure ascribed to the 4-hydroxygeraniolglucoside previously described as rosiridin, the NMR-based Mosher ester method revealed the enantiomeric nature of their aglycone moieties. This marks the first report of enantiomeric aglycones among geraniol derivatives. These findings also resolve the long-standing dispute regarding the absolute configuration of rosiridin and congeneric C-4 hydroxylated geraniols and may help explain incongruent bioactivity reports of R. rosea extract. Moreover, the three previously undescribed geranioloids 3-5 were fully characterized by extensive spectroscopic analysis. Quantum mechanics-driven 1H iterative functionalized spin analysis (QM-HifSA) was performed for all isolates and provides detailed NMR spin parameters, with adequate decimal place precision, which enable the distinction of such close congeners exhibiting near identical NMR spectra with high specificity. The outcomes also reinforce the importance of reporting chemical shifts and coupling constants with adequate decimal place precision as a means of achieving specificity and reproducibility in structural analysis.


Subject(s)
Glucosides , Rhodiola , Glucosides/chemistry , Rhodiola/chemistry , Monoterpenes , Reproducibility of Results , Molecular Structure , Plant Extracts
4.
J Am Soc Mass Spectrom ; 34(2): 182-192, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36648409

ABSTRACT

Cimitrypazepines are a class of natural products produced by Pictet-Spengler condensation of Nω-methylserotonin and aldehydes in a manner that produces a seven-membered azepine ring. In this study, the fragmentation behavior of this class of molecules under low-energy CID was investigated in detail. Proposed mechanisms of fragmentation were supported by deuterium labeling and DFT calculations. Loss of methylamine and methylenimine were dominant fragmentation pathways of analogs containing an aliphatic side chain. Loss of methylenimine was found to proceed via unusual methyl cation transfer. Fragmentation of analogs containing an aromatic side chain was strongly influenced by the nature of the substituents and proceeded via a novel retro-Pictet-Spengler pathway and involvement of ion-neutral complexes. In some cases, a gas-phase interconversion between the azepine and ß-carboline ring was observed during fragmentation. Detailed analysis of fragmentation behavior provided in this study will serve as a valuable guide for the discovery of new analogs from natural sources.

5.
Org Lett ; 24(40): 7265-7270, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36194676

ABSTRACT

Four new rufomycins, compounds 1-4, named rufomycins 56, 57, 58, and 61, respectively, exhibiting new skeletal features, were obtained from Streptomyces atratus strain MJM3502 and were fully characterized. Compounds 1 and 2 possess a 4-imidazolidinone ring not previously encountered in this family of cyclopeptides, thereby resulting in a [5,17] bicyclic framework. The in vitro anti-Mycobacterium tuberculosis potency of compounds 3 and 4 is remarkable, with minimum inhibitory concentration values of 8.5 and 130 nM, respectively.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Oligopeptides , Streptomyces , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Humans , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Oligopeptides/chemistry , Oligopeptides/pharmacology , Peptides, Cyclic/chemistry , Streptomyces/chemistry , Structure-Activity Relationship
6.
Fitoterapia ; 156: 105016, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34416305

ABSTRACT

The importance of Trifolium pratense L. as a dietary supplement and its use in traditional medicine prompted the preparation of a thorough metabolite profile. This included the identification and quantitation of principal constituents as well as low abundant metabolites that constitute the residual complexity (RC) of T. pratense bioactives. The purity and RC of isoflavonoid fractions from standardized red clover extract (RCE) was determined using an off-line combination of countercurrent separation (CCS) and two orthogonal analytical methodologies: quantitative 1H NMR spectroscopy with external calibration (EC-qHNMR) and LC-MS. A single-step hydrostatic CCS methodology (Centrifugal Partition Chromatography [CPC]) was developed that fractionated the isoflavonoids with a hexanes-ethyl acetate-methanol-water (HEMWat) 5.5/4.5/5/5, v/v solvent system (SS) into 75 fractions containing 3 flavonolignans, 2 isoflavonoid glycosides, as well as 17 isoflavonoids and related compounds. All metabolites were identified and quantified by qHNMR spectroscopy. The data led to the creation of a complete isoflavonoid profile to complement the biological evaluation. For example, fraction 69 afforded 90.5% w/w biochanin A (17), with 0.33% w/w of prunetin (16), and 0.76% w/w of maackiain (15) as residual components. Fraction 27 with 89.4% w/w formononetin (13) as the major component had, in addition, a residual complexity consisting of 3.37%, 0.73%, 0.68% w/w of pseudobaptigenin (11), kaempferol (10) and pratensein (8), respectively. Despite the relatively high resolving power of CPC, and not unexpectedly, the chromatographic fractions retained varying degrees of the original metabolomic diversity. Collectively, the extent of metabolomic diversity should be recognized and used to guide the development of isolation strategies, especially when generating samples for bioactivity evaluation. The simultaneous structural and quantitative characterization enabled by qNMR, supported by LC-MS measurements, enables the evaluation of a relatively large number of individual fractions and, thereby, advances both the chemical and biological evaluation of active principles in complex natural products.


Subject(s)
Flavonoids/analysis , Flavonoids/chemistry , Mass Spectrometry/methods , Plant Extracts/analysis , Plant Extracts/chemistry , Trifolium/anatomy & histology , Trifolium/chemistry , Medicine, Traditional , Plants, Medicinal/anatomy & histology , Plants, Medicinal/chemistry
7.
Anal Chem ; 93(34): 11701-11709, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34461730

ABSTRACT

Off-line combination of countercurrent separation (CCS) and quantitative 1H NMR (qHNMR) methodologies enabled the systematic dissection and gravimetric quantification of a chemically complex Rhodiola rosea crude extract (RCE). The loss-free nature and high selectivity of CCS achieved the quantitative discrimination of fatty acids (FAs), sugars, and proanthocyanidins (PACs) from ten other metabolite classes: phenylpropanoids, phenylethanoids, acyclic monoterpenoid glycosides, pinene derived glycosides, benzyl alcohol glycosides, cyanogenic glycosides, flavonoids, gallic acids, methylparabens, and cuminol glycosides. The ability of CCS to remove ("knockout") PACs completely resolved challenges with baselines that plague NMR and UHPLC analyses and produce inaccurate integral and AUC quantitation, respectively. NMR analysis of the non-PAC fractions enabled unambiguous identification of metabolites and their characteristic resonances for subsequent multitarget absolute quantification by qHNMR using a single, nonidentical internal calibrant (IC). An orthogonal LC-MS/MS method validated the gravimetric nature of the CCS-qHNMR analytical tandem. Underlying this LC-based cross-validation, comprehensive phytochemical isolation and characterization established 19 single-compound reference standards that represented all ten metabolite classes. Finally, quantum mechanical 1H iterative Full Spin Analysis (HiFSA) of each standard provided a blueprint for future structural dereplication, identification, and quantification of Rhodiola marker constituents. The combination of two gravimetric analytical methods, loss-free CCS and IC-qHNMR, realizes the first chemical standardization of a botanical material that comprehensively captures a metabolome and permits absolute quantification.


Subject(s)
Rhodiola , Chromatography, Liquid , Countercurrent Distribution , Metabolome , Tandem Mass Spectrometry
8.
Planta Med ; 87(12-13): 998-1007, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33975359

ABSTRACT

Prenyl moieties are commonly encountered in the natural products of terpenoid and mixed biosynthetic origin. The reactivity of unsaturated prenyl motifs is less recognized and shown here to affect the acyclic Rhodiola rosea monoterpene glycoside, kenposide A (8: ), which oxidizes readily on silica gel when exposed to air. The major degradation product mediated under these conditions was a new aldehyde, 9: . Exhibiting a shortened carbon skeleton formed through the breakdown of the terminal isopropenyl group, 9: is prone to acetalization in protic solvents. Further investigation of minor degradation products of both 8: and 8-prenylapigenin (8-PA, 12: ), a flavonoid with an ortho-prenyl substituent, revealed that the aldehyde formation was likely realized through epoxidation and subsequent cleavage at the prenyl olefinic bond. Employment of 1H NMR full spin analysis (HiFSA) achieved the assignment of all chemical shifts and coupling constants of the investigated terpenoids and facilitated the structural validation of the degradation product, 9: . This study indicates that prenylated compounds are generally susceptible to oxidative degradation, particularly in the presence of catalytic mediators, but also under physiological conditions. Such oxidative artifact/metabolite formation leads to a series of compounds with prenyl-derived (cyclic) partial structures that are analogous to species formed during Phase I metabolism in vivo. Phytochemical and pharmacological studies should take precautions or at least consider the impact of (unavoidable) exposure of prenyl-containing compounds to catalytic and/or oxidative conditions.


Subject(s)
Biological Products , Artifacts , Neoprene , Silica Gel
9.
Fitoterapia ; 152: 104878, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33757846

ABSTRACT

Optimal parameters for the auto-hydrolysis of (iso)flavone glycosides to aglycones in ground Trifolium pratense L. plant material were established as a "green" method for the production of a reproducible red clover extract (RCE). The process utilized 72-h fermentation in DI water at 25 and 37 °C. The aglycones obtained at 25 °C, as determined by UHPLC-UV and quantitative 1H NMR (qHNMR), increased significantly in the auto-hydrolyzed (ARCE) (6.2-6.7% w/w biochanin A 1, 6.1-9.9% formononetin 2) vs a control ethanol (ERCE) extract (0.24% 1, 0.26% 2). After macerating ARCE with 1:1 (v/v) diethyl ether/hexanes (ARCE-d/h), 1 and 2 increased to 13.1-16.7% and 14.9-18.4% w, respectively, through depletion of fatty components. The final extracts showed chemical profiles similar to that of a previous clinical RCE. Biological standardization revealed that the enriched ARCE-d/h extracts produced the strongest estrogenic activity in ERα positive endometrial cells (Ishikawa cells), followed by the precursor ARCE. The glycoside-rich ERCE showed no estrogenic activity. The estrogenicity of ARCE-d/h was similar to that of the clinical RCE. The lower potency of the ARCE compared to the prior clinical RCE indicated that substantial amounts of fatty acids/matter likely reduce the estrogenicity of crude hydrolyzed preparations. The in vitro dynamic residual complexity of the conversion of biochanin A to genistein was evaluated by LC-MS-MS. The outcomes help advance translational research with red clover and other (iso)flavone-rich botanicals by inspiring the preparation of (iso)flavone aglycone-enriched extracts for the exploration of new in vitro and ex vivo bioactivities that are unachievable with genuine, glycoside-containing extracts.


Subject(s)
Flavonoids/chemistry , Plant Extracts/chemistry , Trifolium/chemistry , Cell Line, Tumor , Chromatography, High Pressure Liquid , Humans , Hydrolysis , Phytochemicals/chemistry , Phytoestrogens/chemistry , Plant Components, Aerial/chemistry , Solvents
10.
J Nat Prod ; 84(3): 846-856, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33710886

ABSTRACT

Curcuma longa (turmeric) has an extensive history of ethnomedical use for common ailments, and "curcumin"-containing dietary supplements (CDS) are a highly visible portion of today's self-medication market. Owing to raw material cost pressure, CDS products are affected by economically motivated, nefarious adulteration with synthetic curcumin ("syncumin"), possibly leading to unexpected toxicological issues due to "residual" impurities. Using a combination of targeted and untargeted (phyto)chemical analysis, this study investigated the botanical integrity of two commercial "turmeric" CDS with vitamin and other additives that were associated with reported clinical cases of hepatotoxicity. Analyzing multisolvent extracts of the CDS by 100% quantitative 1H NMR (qHNMR), alone and in combination with countercurrent separation (CCS), provided chemical fingerprints that allowed both the targeted identification and quantification of declared components and the untargeted recognition of adulteration. While confirming the presence of curcumin as a major constituent, the universal detection capability of NMR spectroscopy identification of significant residual impurities, including potentially toxic components. While the loss-free nature of CCS captured a wide polarity range of declared and unwanted chemical components, and also increased the dynamic range of the analysis, (q)HNMR determined their mass proportions and chemical constitutions. The results demonstrate that NMR spectroscopy can recognize undeclared constituents even if they represent only a fraction of the mass balance of a dietary supplement product. The chemical information associated with the missing 4.8% and 7.4% (m/m) in the two commercial samples, exhibiting an otherwise adequate curcumin content of 95.2% and 92.6%, respectively, pointed to a product integrity issue and adulteration with undeclared synthetic curcumin. Impurities from synthesis are most plausibly the cause of the observed adverse clinical effects. The study exemplifies how the simultaneously targeted and untargeted analytical principle of the 100% qHNMR method, performed with entry-level high-field instrumentation (400 MHz), can enhance the safety of dietary supplements by identifying adulterated, non-natural "natural" products.


Subject(s)
Curcuma/chemistry , Drug Contamination , Plant Extracts/analysis , Countercurrent Distribution , Curcumin/analysis , Dietary Supplements/analysis , Magnetic Resonance Spectroscopy , Plant Extracts/standards
11.
J Nat Prod ; 84(3): 836-845, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33625215

ABSTRACT

The present study demonstrates the relationship between conventional and quantum mechanical (QM) NMR spectroscopic analyses, shown here to assist in building a convincingly orthogonal platform for the solution and documentation of demanding structures. Kaempferol-3-O-robinoside-7-O-glucoside, a bisdesmosidic flavonol triglycoside and botanical marker for the aerial parts of Withania somnifera, served as an exemplary case. As demonstrated, QM-based 1H iterative full spin analysis (HiFSA) advances the understanding of both individual nuclear resonance spin patterns and the entire 1H NMR spectrum of a molecule and establishes structurally determinant, numerical HiFSA profiles. The combination of HiFSA with regular 1D 1H NMR spectra allows for simplified yet specific identification tests via comparison of high-quality experimental with QM-calculated spectra. HiFSA accounts for all features encountered in 1H NMR spectra: nonlinear high-order effects, complex multiplets, and their usually overlapped signals. As HiFSA replicates spectrum patterns from field-independent parameters with high accuracy, this methodology can be ported to low-field NMR instruments (40-100 MHz). With its reliance on experimental NMR evidence, the QM approach builds up confidence in structural characterization and potentially reduces identity analyses to simple 1D 1H NMR experiments. This approach may lead to efficient implementation of conclusive identification tests in pharmacopeial and regulatory analyses: from simple organics to complex natural products.


Subject(s)
Glycosides/analysis , Magnetic Resonance Spectroscopy/standards , Withania/chemistry , Flavonols/analysis , Kaempferols/analysis , Monosaccharides/analysis , Plant Components, Aerial/chemistry
12.
Anal Chem ; 93(5): 2733-2741, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33481571

ABSTRACT

Quantitative 1H nuclear magnetic resonance (qHNMR) is a highly regarded analytical methodology for purity determination as it balances metrological rigor, practicality, and versatility well. While ideal for intrinsically mass-limited samples, external calibration (EC) qHNMR is overshadowed by the prevalence of internal calibration and perceived rather than real practical limitations. To overcome this hurdle, this study applied the principle of reciprocity, certified reference materials (caffeine as analyte, dimethyl sulfone as calibrant), and a systematic evaluation of data acquisition workflows to extract key factors for the achievement of accuracy and precision in EC-qHNMR. Automatic calibration of the 90° pulse width (90 PW) formed the foundation for the principle of reciprocity and used optimized nutation experiments, showing good agreement with values derived from manual high-precision measurement of 360 PW. Employing the automatic 90 PW calibration, EC-qHNMR with automatic vs manual tuning and matching (T&M) yielded the certified purity value within 1% error. The timing of T&M (before vs after shimming) turned out to be critically important: sufficient time is required to achieve full-temperature equilibrium relative to thermal gradients in the air inside the probe and the sample. Achievable accuracy across different NMR solvents varies with differences in thermal conductivity and leads to 2% or greater errors. With matching solvents, the demonstrated accuracy of ∼1.0% underscores the feasibility of EC-qHNMR as a highly practical research tool.


Subject(s)
Magnetic Resonance Imaging , Calibration , Magnetic Resonance Spectroscopy , Reference Standards , Reproducibility of Results
13.
Phytochem Lett ; 45: 110-116, 2021 Oct.
Article in English | MEDLINE | ID: mdl-35465454

ABSTRACT

A new isoflavonoid, xanthocerin J, along with previously described xanthocerin A, were isolated from a methanol extract of aerial parts of a traditional American Indian herb, Amorpha canescens Pursh (Asteraceae). The structures of these compounds were characterized using mass spectrometry and NMR based on an isolation protocol using magnetic microbead affinity selection screening (MagMASS) for ligands to the estrogen receptor alpha (ERα). These compounds bound to ERα from an active fraction that exhibited dose-dependent antiestrogenic activity in the in vitro Ishikawa assay. However, these compounds did not exhibit antiestrogenic activity in the cell-based Ishikawa assay. Xanthocerin A and J may exhibit synergistic or additive activity with other compounds found in A. canescens which needs further exploration. This work highlights the potential of A. canescens as a prospect for the future discovery of compounds for women's health related to estrogen pathways.

14.
J Nat Prod ; 83(11): 3287-3297, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33151073

ABSTRACT

The present study elucidated the structures of three A-type tri- and tetrameric proanthocyanidins (PACs) isolated from Cinnamomum verum bark to the level of absolute configuration and determined their dental bioactivity using two therapeutically relevant bioassays. After selecting a PAC oligomer fraction via a biologically diverse bioassay-guided process, in tandem with centrifugal partition chromatography, phytochemical studies led to the isolation of PAC oligomers that represent the main bioactive principles of C. verum: two A-type tetrameric PACs, epicatechin-(2ß→O→7,4ß→8)-epicatechin-(4ß→6)-epicatechin-(2ß→O→7,4ß→8)-catechin (1) and parameritannin A1 (2), together with a trimer, cinnamtannin B1 (3). Structure determination of the underivatized proanthocyanidins utilized a combination of HRESIMS, ECD, 1D/2D NMR, and 1H iterative full spin analysis data and led to NMR-based evidence for the deduction of absolute configuration in constituent catechin and epicatechin monomeric units.


Subject(s)
Cinnamomum zeylanicum/chemistry , Dental Health Services , Plant Bark/chemistry , Polymers/chemistry , Proanthocyanidins/chemistry , Humans , Molecular Structure , Spectrum Analysis/methods
15.
Fitoterapia ; 146: 104686, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32679162

ABSTRACT

The 1H NMR spectra of crude extracts from a total of 33 Actaea samples were acquired and analyzed for their species- and plant part-specific metabolomic characteristics by identifying fingerprint resonances via visual observation as well as a chemometric approach using principal component analysis (PCA). The main study subjects were the roots/rhizomes and aerial parts of three American species, Actaea racemosa (AR), Actaea podocarpa (AP) and Actaea cordifolia (AC). AP exhibited an already visually distinct chemical profile from those of the other two species. The species-characteristic resonances were identified as analytical chemotaxonomic markers. AR and AC exhibited visually similar 1H NMR spectral profiles that required statistical analysis for differentiation. Several characteristic peaks and peak patterns were identified for each group of samples. Together with the three American Actaea species, the characteristics of the 1H NMR spectra of Asian species are also discussed. A statistical analysis method using PCA was employed to provide the metabolomic profile for visually minor but analytically significant chemotaxonomic differences. PCA scores allowed differentiation between the three American Actaea species, as well as the ability to differentiate between the various plant parts (aboveground vs. roots/rhizomes).


Subject(s)
Actaea/chemistry , Actaea/classification , Metabolomics , Cimicifuga/chemistry , Magnetic Resonance Spectroscopy , North America , Phytochemicals/analysis , Species Specificity
16.
J Nat Prod ; 83(6): 1950-1959, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32463230

ABSTRACT

NMR- and MS-guided metabolomic mining for new phytoconstituents from a widely used dietary supplement, Rhodiola rosea, yielded two new (+)-myrtenol glycosides, 1 and 2, and two new cuminol glycosides, 3 and 4, along with three known analogues, 5-7. The structures of the new compounds were determined by extensive spectroscopic data analysis. Quantum mechanics-driven 1H iterative full spin analysis (QM-HiFSA) decoded the spatial arrangement of the methyl groups in 1 and 2, as well as other features not recognizable by conventional methods, including higher order spin-coupling effects. Expanding applied HiFSA methodology to monoterpene glycosides advances the toolbox for stereochemical assignments, facilitates their structural dereplication, and provides a more definitive reference point for future phytochemical and biological studies of R. rosea as a resilience botanical. Application of a new NMR data analysis software package, CT, for QM-based iteration of NMR spectra is also discussed.


Subject(s)
Monoterpenes/chemistry , Rhodiola/chemistry , Glycosides/chemistry , Hydrolysis , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Structure , Plant Extracts/chemistry , Plant Roots/chemistry , Quantum Theory
17.
Anal Chem ; 92(7): 4954-4962, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32108467

ABSTRACT

Utilizing the distinct HMBC cross-peak patterns of lower-field range (LFR; 11.80-14.20 ppm) hydroxyl singlets, presented NMR methodology characterizes flavonoid metabolomes both qualitatively and quantitatively. It enables simultaneous classification of the structural types of 5-OH flavonoids and biogenetically related 2'-OH chalcones, as well as quantification of individual metabolites from 1H NMR spectra, even in complex mixtures. Initially, metabolite-specific LFR 1D 1H and 2D HMBC patterns were established via literature mining and experimental data interpretation, demonstrating that LFR HMBC patterns encode the different structural types of 5-OH flavonoids/2'-OH chalcones. Taking advantage of the simplistic multiplicity of the H,H-uncoupled LFR 5-/2'-OH singlets, individual metabolites could subsequently be quantified by peak fitting quantitative 1H NMR (PF-qHNMR). Metabolomic analysis of enriched fractions from three medicinal licorice (Glycyrrhiza) species established proof-of-concept for distinguishing three major structural types and eight subtypes in biomedical applications. The method identified 15 G. uralensis (GU) phenols from the six possible subtypes of 5,7-diOH (iso)flav(an)ones with 6-, 8-, and nonprenyl substitution, including the new 6-prenyl-licoisoflavanone (1) and two previously unknown compounds (4 and 7). Relative (100%) qNMR established quantitative metabolome patterns suitable for species discrimination and plant metabolite studies. Absolute qNMR with combined external and internal (solvent) calibration (ECIC) identified and quantified 158 GU metabolites. HMBC-supported qHNMR analysis of flavonoid metabolomes ("flavonomics") empowers the exploration of structure-abundance-activity relationships of designated bioactivity. Its ability to identify and quantify numerous metabolites simultaneously and without identical reference materials opens new avenues for natural product discovery and botanical quality control and can be adopted to other flavonoid- and chalcone-containing taxa.


Subject(s)
Data Mining , Flavonoids/analysis , Flavonoids/metabolism , Hydroxides/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure
18.
Fitoterapia ; 141: 104467, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31887327

ABSTRACT

The cycloartane triterpene content in the roots/rhizomes (RR) and aerial parts (PX) of Actaea racemosa (AR), A. podocarpa (AP), and A. cordifolia (AC) have been investigated by quantitative 1H NMR (qHNMR). Thereby, it was demonstrated that qHNMR represents a powerful methodology for the analysis of crude plant extracts as it does not rely on the rarely available identical reference triterpenes. Specifically, the presence of the characteristic C-19 cyclopropane (exo/endo) hydrogen signals made it possible to quantify the less common/not ubiquitously present group of cycloartane triterpenes, directly in extracts. As an example, ARPX and ARRR were shown to contain, 3.8-20.8% ± 8.2% and 7.2-19.3% ± 4.0% of cycloartane triterpenes, respectively. The cycloartane concentration in ACPX and ACRR was 7.5-8.7% ± 0.8% and 13.9-28.5% ± 7.3%, respectively, based on the weight of the extract. AP was shown to contain notably lower amounts of the cycloartane triterpenes as compared to AR and AC in the roots/rhizomes. The content for APPX and APRR was only 2.1-3.3% ± 0.7% and 1.1-4.0% ± 1.5%, respectively. In addition, an example is presented for the identification of specific cycloartanes as marker compounds for AR within crude extracts based on the same qHNMR spectra and 2D NMR methods.


Subject(s)
Cimicifuga/chemistry , Triterpenes/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Bacteria/drug effects , Candida albicans/drug effects , Magnetic Resonance Spectroscopy , Molecular Structure , Plant Extracts/chemistry
19.
J Nat Prod ; 82(9): 2400-2408, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31478376

ABSTRACT

Numerous reports assigning (Z)-ligustilide (1) the role of a major bioactive principle in Apiaceae botanicals are called into question by the recurrent demonstrations of 1 being an unstable, rapidly degrading compound, ultimately leading to dynamic residual complexity. While Angelica sinensis is recognized for its therapeutic value in (peri-)menopausal symptom management, its purported active principle, 1, represents a typical example of the instability-bioactivity chasm of botanicals. To help bridge the gap, this study used both the essential oil and purified 1 obtained from A. sinensis to investigate the factors that influence the chemical transformation of 1, the products formed, and the rationale for monitoring 1 in natural product preparations. Countercurrent separation was used to purify 1 from a supercritical fluid extract of A. sinensis, achieving 93.4% purity in a single step. Subsequent purification by preparative HPLC afforded 1 with a 98.0% purity. Providing a mass balance setting, we monitored chemical changes occurring to highly purified 1 under various conditions and at different time points, in sealed NMR tubes by quantitative 1H NMR (qHNMR). The nondestructive nature of NMR enabled a comprehensive assessment of degradation products. Moreover, in being a mole-based determination, the total intensity (integral) of all NMR signals intrinsically represents the theoretical mass balance within the sample solution. The results demonstrated that 1 is most stable while within the original plant material. Exposure to light had a profound impact on the chemical transformation of 1, leading to the formation of ligustilide dimers and trimers, as verified by both NMR and LC-HRMS studies. Moreover, the results shown for 1, augmented by other recent outcomes, have serious implications for the meaningful biological evaluation of NPs that exhibit instability/reactivity, while having a plethora of "promising" bioactivities reported in the literature and being frequently associated with unsubstantiated health claims.


Subject(s)
4-Butyrolactone/analogs & derivatives , Angelica sinensis/chemistry , 4-Butyrolactone/chemistry , Countercurrent Distribution , Plant Extracts/chemistry
20.
J Agric Food Chem ; 67(42): 11650-11656, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31554401

ABSTRACT

Occurring in hops (Humulus lupulus) and beer as a racemic mixture, (2R,2S)-8-prenylnaringenin (8-PN) is a potent phytoestrogen in hop dietary supplements used by women as alternatives to conventional hormone therapy. With a half-life exceeding 20 h, 8-PN is excreted primarily as 8-PN-7-O-glucuronide or 8-PN-4'-O-glucuronide. Human liver microsomes and 11 recombinant human UDP-glucuronosyltransferases (UGTs) were used to catalyze the formation of the two oxygen-linked glucuronides of purified (2R)-8-PN and (2S)-8-PN, which were subsequently identified using mass spectrometry and nuclear magnetic resonance spectroscopy. Formation of (2R)- and (2S)-8-PN-7-O-glucuronides predominated over the 8-PN-4'-O-glucuronides except for intestinal UGT1A10, which formed more (2S)-8-PN-4'-O-glucuronide. (2R)-8-PN was a better substrate for all 11 UGTs except for UGT1A1, which formed more of both (2S)-8-PN glucuronides than (2R)-8-PN glucuronides. Although several UGTs conjugated both enantiomers of 8-PN, some conjugated just one enantiomer, suggesting that human phenotypic variation might affect the routes of metabolism of this chiral estrogenic constituent of hops.


Subject(s)
Flavanones/chemistry , Glucuronides/chemistry , Glucuronosyltransferase/chemistry , Plant Extracts/chemistry , Biocatalysis , Flavanones/metabolism , Glucuronides/metabolism , Glucuronosyltransferase/metabolism , Humans , Humulus/chemistry , Humulus/metabolism , Mass Spectrometry , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Plant Extracts/metabolism , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...