Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Image Process ; 20(10): 2912-24, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21486717

ABSTRACT

In this paper, we propose an approach for tracking an object of interest based on 3-D range data. We employ particle filtering and active contours to simultaneously estimate the global motion of the object and its local deformations. The proposed algorithm takes advantage of range information to deal with the challenging (but common) situation in which the tracked object disappears from the image domain entirely and reappears later. To cope with this problem, a method based on principle component analysis (PCA) of shape information is proposed. In the proposed method, if the target disappears out of frame, shape similarity energy is used to detect target candidates that match a template shape learned online from previously observed frames. Thus, we require no a priori knowledge of the target's shape. Experimental results show the practical applicability and robustness of the proposed algorithm in realistic tracking scenarios.

2.
IEEE Trans Image Process ; 17(11): 2029-39, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18854247

ABSTRACT

In this paper, we propose a natural framework that allows any region-based segmentation energy to be re-formulated in a local way. We consider local rather than global image statistics and evolve a contour based on local information. Localized contours are capable of segmenting objects with heterogeneous feature profiles that would be difficult to capture correctly using a standard global method. The presented technique is versatile enough to be used with any global region-based active contour energy and instill in it the benefits of localization. We describe this framework and demonstrate the localization of three well-known energies in order to illustrate how our framework can be applied to any energy. We then compare each localized energy to its global counterpart to show the improvements that can be achieved. Next, an in-depth study of the behaviors of these energies in response to the degree of localization is given. Finally, we show results on challenging images to illustrate the robust and accurate segmentations that are possible with this new class of active contour models.


Subject(s)
Algorithms , Artificial Intelligence , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Reproducibility of Results , Sensitivity and Specificity
3.
Proc Int Conf Image Proc ; : 241-244, 2008.
Article in English | MEDLINE | ID: mdl-23645076

ABSTRACT

We propose a tracking system that is especially well-suited to tracking targets which change drastically in size or appearance. To accomplish this, we employ a fast, two phase template matching algorithm along with a periodic template update method. The template matching step ensures accurate localization while the template update scheme allows the target model to change over time along with the appearance of the target. Furthermore, the algorithm can deliver real-time results even when targets are very large. We demonstrate the proposed method with good results on several sequences showing targets which exhibit large changes in size, shape, and appearance.

4.
Article in English | MEDLINE | ID: mdl-23652079

ABSTRACT

We describe a method for segmenting neural fiber bundles in diffusion-weighted magnetic resonance images (DWMRI). As these bundles traverse the brain to connect regions, their local orientation of diffusion changes drastically, hence a constant global model is inaccurate. We propose a method to compute localized statistics on orientation information and use it to drive a variational active contour segmentation that accurately models the non-homogeneous orientation information present along the bundle. Initialized from a single fiber path, the proposed method proceeds to capture the entire bundle. We demonstrate results using the technique to segment the cingulum bundle and describe several extensions making the technique applicable to a wide range of tissues.

SELECTION OF CITATIONS
SEARCH DETAIL
...