Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Anim Sci ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719973

ABSTRACT

This study aimed to evaluate the effect of including soybean molasses (SM) on performance, blood parameters, carcass traits, meat quality, fatty acid and muscle (longissimus thoracis) transcriptomic profiles of castrated lambs. Twenty Dorper × Santa Inês lambs (20.06 ± 0.76 kg BW) were assigned to a randomized block design, stratified by BW, with the following treatments: CON - 0 g/kg of SM and SM20 - 200 g/kg of SM on DM basis, allocated in individual pens. The diet consisted of 840 g/kg concentrate and 160 g/kg corn silage for 76 days, with the first 12 days as an adaptation period and the remaining 64 days on the finishing diet. The SM20 diet increased blood urea concentration (P = 0.03) while reduced glucose concentration (P = 0.04). Lambs fed SM showed higher subcutaneous fat deposition (P = 0.04) and higher subcutaneous adipocyte diameter (P < 0.01), in addition to reduced meat lipid oxidation (P < 0.01). Soybean molasses reduced the quantity of branched-chain fatty acids in longissimus thoracis (P = 0.05) and increased the quantity of saturated fatty acids (P = 0.01). In the transcriptomic analysis, 294 genes were identified as differentially expressed, which belong to pathways such as oxidative phosphorylation, citric acid cycle, and monosaccharide metabolic process. In conclusion, diet with SM increased carcass fat deposition, reduced lipid oxidation, and changed the energy metabolism, supporting its use in ruminant nutrition.

2.
J Anim Sci ; 100(5)2022 May 01.
Article in English | MEDLINE | ID: mdl-35417561

ABSTRACT

This study determined the energy requirement for maintenance of purebred Nellore cattle and its crossbreds using data from a comparative slaughter trial in which animals were raised under the same plane of nutrition from birth through slaughter and born from a single commercial Nellore cowherd. A total of 79 castrated steers (361 ± 54 kg initial body weight [BW]) were used in a completely randomized design by age (22 mo ± 23 d of age) with four genetic groups (GG): Nellore (NL), ½ Angus × ½ Nellore (AN), ½ Canchim × ½ Nellore (CN), and ½ Simmental × ½ Nellore (SN). The experimental design provided ranges in metabolizable energy (ME) intake (MEI), BW, and average daily gain needed to develop regression equations to predict net energy for maintenance (NEm) requirements. Four steers of each GG were slaughtered to determine the initial body composition. The remaining 63 steers were assigned to different nutritional treatments (NT) by GG; ad libitum or limit-fed treatments (receiving 70% of the daily feed of the ad libitum treatment of the same GG). Full BW was recorded at birth, weaning, 12, 18, and 22 mo. In the feedlot, steers were fed for 101 d a diet containing (DM basis) 60% corn silage and 40% concentrate. No difference in age at weaning (P = 0.534) and slaughter (P = 0.179 and P = 0.896, for GG and NT, respectively) were observed. AN steers were heavier at weaning weight, yearling weight and had higher empty BW (EBW; P = 0.007, P = 0.014, and P < 0.001, respectively) in comparison to NL, CN, and SN. There were no interactions (P > 0.05) between GG and NT for any variable evaluated. When fed ad libitum, AN steers had higher daily MEI (Mcal/d; P < 0.001) in comparison to NL, CN, and SN. On a constant age basis, differences were observed on body composition (P < 0.05) between GG. The slope (P = 0.600) and intercept (P = 0.702) of the regression of log heat production on MEI were similar among GG. Evaluating at the same age and the same frame size, there were no differences in NEm requirement between Nellore and AN (P = 0.528), CN (P = 0.671), and SN (P = 0.706). The combined data indicated a NEm requirement of 86.8 kcal/d/kg0.75 EBW and a ME required for maintenance requirement had a common value of 137.53 kcal/d/kg0.75 EBW. The efficiency of energy utilization for maintenance and the efficiency of energy utilization for growth values were similar among GG (P > 0.05 and P > 0.05, respectively) and were on average 63.2% and 26.0%, respectively. However, although not statistically different, the NEm values from NL showed a decrease in NEm of 5.76% compared with AN steers.


Although several studies have shown that the maintenance energy expenditures vary with breeds, there has been no available data comparing the energy requirements of different genetic groups of beef cattle determined during the finishing phase when raised under the same plane of nutrition from birth through slaughter born from a single cowherd. This study evaluated the influence of purebred Nellore and its crosses with Simmental, Angus, and Canchim slaughtered at the same age and body composition on their net energy requirement for maintenance (NEm). Animals were reared in tropical conditions, receiving only free-choice minerals from birth through the beginning of the feedlot phase, potentially altering the intake, carcass composition, mature weight, and consequently, affecting the energy requirement for maintenance during the finishing period. The pooled data analysis for Nellore and its crosses resulted in common NEm requirement of 86.9 kcal/d/kg0.75 of empty body weight (EBW). However, although not statistically different, the NEm values from Nellore (NL) and Angus × Nellore (AN) were 85.5 and 90.8 kcal/d/kg0.75 EBW, respectively, showing a decrease in NEm of 5.76% for NL in comparison with AN steers.


Subject(s)
Energy Metabolism , Tropical Climate , Animal Feed/analysis , Animals , Body Composition , Cattle/genetics , Diet/veterinary , Energy Intake , Energy Metabolism/genetics , Nutritional Requirements
3.
J Dairy Sci ; 105(4): 3222-3233, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35151478

ABSTRACT

Few studies have been published on the body growth of replacement dairy heifers from Jersey (JER) and Holstein × Gyr (H × G) breeds, as most of them have focused on Holstein (HOL) heifers. In addition, HOL genetics vary significantly across countries. Our goal was to study the body growth curves of 3 distinct genetic groups of heifers (HOL, H × G, and JER) using data from Brazilian commercial dairy herds. Heart girth [to estimate body weight (BW)], hip height (HH), and withers height (WH) were measured. Weights (heifers and cows) and heights (only heifers) were collected from animals in several herds for each genetic group to model and describe the growth rates, mature body weight (MBW), weights, and heights for the recommended age at first breeding (RAFB) and first calving (RAFC). The RAFB values for HOL, H × G, and JER cattle were 15, 18, and 13 mo, respectively. The RAFC values for HOL, H × G, and JER cattle were 24, 27, and 22 mo, respectively. Data were obtained from 18 dairy farms located in 4 Brazilian states and analyzed using nonlinear modeling. Data were collected from 2,266 animals: 878 HOL, 610 H × G, and 778 JER cattle. We observed different body growth patterns in each genetic group. Jersey cattle matured earlier than HOL and H × G, especially for BW and HH. Mature BW of the HOL, H × G, and JER cattle was 681, 607, and 440 kg, respectively. All genetic groups reached the recommended BW at RAFB. However, the genetic groups did not reach the recommended BW at RAFC. Average daily weight gain from weaning to RAFB was 0.84, 0.53, and 0.54 kg/d for HOL, H × G, and JER cattle, respectively. Average daily gain from RAFB to RAFC was 0.53, 0.42, and 0.48 kg/d for HOL, H × G, and JER cattle, respectively. The HH at RAFB and RAFC were 130 and 139 cm for HOL, 130 and 137 cm for H × G, and 114 and 124 cm for JER. Withers height at RAFB and RAFC were 125 and 134 cm, 125 and 134 cm, and 110 and 121 cm for HOL, H × G, and JER cattle, respectively. In general, the rearing practices were adequate to reach the recommended BW at RAFB but below the recommended BW at RAFC for all genetic groups. In addition, each genetic group demonstrated different body growth patterns, especially for BW.


Subject(s)
Eating , Weight Gain , Animals , Body Weight , Brazil , Cattle/genetics , Female
4.
Animals (Basel) ; 11(8)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34438906

ABSTRACT

This study evaluated the effects of the duration of ZH supplementation and days on feed (DOF) on performance, carcass characteristics, and saleable meat yield of Nellore young bulls. The fixed effects included the duration (0, 20, 30, or 40 d before slaughter plus a 3 d ZH withdrawal period-8.33 mg of ZH/kg of DM) and DOF (90 and 117 d). Feed efficiency (G:F) linearly increased when the duration of ZH supplementation increased (p < 0.01). Nellore bulls fed ZH had greater HCW (p < 0.01), dressing percentage (p < 0.01) and Longissimus muscle area (LMA) (p < 0.01), but less 12th-rib fat (p = 0.04) than the control group. The hot carcass weight (HCW) (p < 0.01), and dressing percentage increased linearly (p < 0.01) with the increase of duration of ZH supplementation. The HCW, ossification, and 12th-rib fat increased with DOF (p < 0.01). The ZH supplemented group had most of the individual cuts of hindquarters and total saleable meat increased compared with the control. Zilpaterol hydrochloride was effective in improving hot carcass weight, hindquarter, and saleable meat yields of Nellore bulls when fed for at least 20 d before slaughter, independently of days on feed.

5.
J Food Sci ; 83(5): 1366-1372, 2018 May.
Article in English | MEDLINE | ID: mdl-29660800

ABSTRACT

This study was conducted to test the effect of dietary tannin on the fatty acid profile and sensory attributes of meat from Nellore steers. Thirty-two Nellore bull male were distributed in a completely randomized design and fed diets with condensed tannin extract as follows: 0, 10, 30, and 50 g/kg total DM basis. The physicochemical composition of the meat, lipid oxidation, fatty acid profile, flavor, tenderness, and overall acceptance were evaluated. There was a linear decrease (P ≤ 0.05) on lipid content, tenderness, cooking weight loss, myristic, palmitic, and oleic acids in meat as tannin increased in the diets. The total saturated and monounsaturated fatty acids, the atherogenicity index decreased. However, a linear increase (P ≤ 0.05) was observed for linoleic, linolenic, arachidonic, eicosapentaenoic, and docosapentaenoic acids. The physicochemical characteristic of the meat, such as moisture, ash, and protein contents, water retention capacity, final pH, Warner-Bratzler shear force, collagen, and color indexes (lightness, redness, yellowness, and chrome) did not change with dietary tannin. Also, CLA, n-6:n-3 ratio, Δ9 -desaturase, and elongase activity were not different among diets. In conclusion, condensed tannin linearly increases unsaturated fatty acids and decreases the atherogenicity index of meat; thus, it can be recommended at the highest level (50 g/kg DM) in the diet of Nellore steers. PRACTICAL APPLICATION: Agriculture byproducts plays an important part in the diet of ruminant animals and consequently on food chain and has implications for the composition and quality of the livestock products (milk, meat, and eggs) that people consume. Feeding tannin to steers increases the amount of unsaturated fatty acids and meat tenderness, with a concomitant reduction on saturated fatty acids and the atherogenicity index in meat. Thus, we recommend adding tannin to steer diets to reduce the risk factors for cardiovascular diseases in red meat for human consumption.


Subject(s)
Chemical Phenomena , Fatty Acids/analysis , Proanthocyanidins/administration & dosage , Red Meat/analysis , Adult , Animal Feed/analysis , Animals , Cattle , Color , Consumer Behavior , Dairy Products/analysis , Diet/veterinary , Female , Food Analysis , Food Quality , Food Safety , Humans , Male , Middle Aged , Proanthocyanidins/analysis , Risk Factors , Taste , Young Adult
6.
BMC Genomics ; 17(1): 961, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27875996

ABSTRACT

BACKGROUND: Lipids are a class of molecules that play an important role in cellular structure and metabolism in all cell types. In the last few decades, it has been reported that long-chain fatty acids (FAs) are involved in several biological functions from transcriptional regulation to physiological processes. Several fatty acids have been both positively and negatively implicated in different biological processes in skeletal muscle and other tissues. To gain insight into biological processes associated with fatty acid content in skeletal muscle, the aim of the present study was to identify differentially expressed genes (DEGs) and functional pathways related to gene expression regulation associated with FA content in cattle. RESULTS: Skeletal muscle transcriptome analysis of 164 Nellore steers revealed no differentially expressed genes (DEGs, FDR 10%) for samples with extreme values for linoleic acid (LA) or stearic acid (SA), and only a few DEGs for eicosapentaenoic acid (EPA, 5 DEGs), docosahexaenoic acid (DHA, 4 DEGs) and palmitic acid (PA, 123 DEGs), while large numbers of DEGs were associated with oleic acid (OA, 1134 DEGs) and conjugated linoleic acid cis9 trans11 (CLA-c9t11, 872 DEGs). Functional annotation and functional enrichment from OA DEGs identified important genes, canonical pathways and upstream regulators such as SCD, PLIN5, UCP3, CPT1, CPT1B, oxidative phosphorylation mitochondrial dysfunction, PPARGC1A, and FOXO1. Two important genes associated with lipid metabolism, gene expression and cancer were identified as DEGs between animals with high and low CLA-c9t11, specifically, epidermal growth factor receptor (EGFR) and RNPS. CONCLUSION: Only two out of seven classes of molecules of FA studied were associated with large changes in the expression profile of skeletal muscle. OA and CLA-c9t11 content had significant effects on the expression level of genes related to important biological processes associated with oxidative phosphorylation, and cell growth, survival, and migration. These results contribute to our understanding of how some FAs modulate metabolism and may have protective health function.


Subject(s)
Fatty Acids/metabolism , Gene Expression Profiling , Muscle, Skeletal/metabolism , Transcriptome , Animals , Cattle , Food Quality , Gene Expression Regulation , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Humans , Metabolic Networks and Pathways , Oleic Acid/metabolism , Phenotype , Red Meat/standards , Reproducibility of Results
8.
BMC Genomics ; 17: 235, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26979536

ABSTRACT

BACKGROUND: Nelore is the major beef cattle breed in Brazil with more than 130 million heads. Genome-wide association studies (GWAS) are often used to associate markers and genomic regions to growth and meat quality traits that can be used to assist selection programs. An alternative methodology to traditional GWAS that involves the construction of gene network interactions, derived from results of several GWAS is the AWM (Association Weight Matrices)/PCIT (Partial Correlation and Information Theory). With the aim of evaluating the genetic architecture of Brazilian Nelore cattle, we used high-density SNP genotyping data (~770,000 SNP) from 780 Nelore animals comprising 34 half-sibling families derived from highly disseminated and unrelated sires from across Brazil. The AWM/PCIT methodology was employed to evaluate the genes that participate in a series of eight phenotypes related to growth and meat quality obtained from this Nelore sample. RESULTS: Our results indicate a lack of structuring between the individuals studied since principal component analyses were not able to differentiate families by its sires or by its ancestral lineages. The application of the AWM/PCIT methodology revealed a trio of transcription factors (comprising VDR, LHX9 and ZEB1) which in combination connected 66 genes through 359 edges and whose biological functions were inspected, some revealing to participate in biological growth processes in literature searches. CONCLUSIONS: The diversity of the Nelore sample studied is not high enough to differentiate among families neither by sires nor by using the available ancestral lineage information. The gene networks constructed from the AWM/PCIT methodology were a useful alternative in characterizing genes and gene networks that were allegedly influential in growth and meat quality traits in Nelore cattle.


Subject(s)
Cattle/growth & development , Cattle/genetics , Gene Regulatory Networks , Red Meat , Animals , Brazil , Genetic Association Studies , Genetic Pleiotropy , Genotype , Linkage Disequilibrium , Male , Phenotype , Polymorphism, Single Nucleotide , Transcription Factors/genetics
9.
PLoS One ; 10(6): e0128350, 2015.
Article in English | MEDLINE | ID: mdl-26042666

ABSTRACT

Intramuscular fat (IMF) content is related to insulin resistance, which is an important prediction factor for disorders, such as cardiovascular disease, obesity and type 2 diabetes in human. At the same time, it is an economically important trait, which influences the sensorial and nutritional value of meat. The deposition of IMF is influenced by many factors such as sex, age, nutrition, and genetics. In this study Nellore steers (Bos taurus indicus subspecies) were used to better understand the molecular mechanisms involved in IMF content. This was accomplished by identifying differentially expressed genes (DEG), biological pathways and putative regulatory factors. Animals included in this study had extreme genomic estimated breeding value (GEBV) for IMF. RNA-seq analysis, gene set enrichment analysis (GSEA) and co-expression network methods, such as partial correlation coefficient with information theory (PCIT), regulatory impact factor (RIF) and phenotypic impact factor (PIF) were utilized to better understand intramuscular adipogenesis. A total of 16,101 genes were analyzed in both groups (high (H) and low (L) GEBV) and 77 DEG (FDR 10%) were identified between the two groups. Pathway Studio software identified 13 significantly over-represented pathways, functional classes and small molecule signaling pathways within the DEG list. PCIT analyses identified genes with a difference in the number of gene-gene correlations between H and L group and detected putative regulatory factors involved in IMF content. Candidate genes identified by PCIT include: ANKRD26, HOXC5 and PPAPDC2. RIF and PIF analyses identified several candidate genes: GLI2 and IGF2 (RIF1), MPC1 and UBL5 (RIF2) and a host of small RNAs, including miR-1281 (PIF). These findings contribute to a better understanding of the molecular mechanisms that underlie fat content and energy balance in muscle and provide important information for the production of healthier beef for human consumption.


Subject(s)
Adiposity , Gene Expression Regulation , Muscle, Skeletal/metabolism , Adiposity/genetics , Animals , Breeding , Cattle , Chromosome Mapping , Cysteine/metabolism , Gene Expression Profiling , Genome , Information Theory , Molecular Sequence Annotation , Phenotype , Signal Transduction/genetics
10.
BMC Genomics ; 16: 242, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25887532

ABSTRACT

BACKGROUND: Efficiency of feed utilization is important for animal production because it can reduce greenhouse gas emissions and improve industry profitability. However, the genetic basis of feed utilization in livestock remains poorly understood. Recent developments in molecular genetics, such as platforms for genome-wide genotyping and sequencing, provide an opportunity to identify genes and pathways that influence production traits. It is known that transcriptional networks influence feed efficiency-related traits such as growth and energy balance. This study sought to identify differentially expressed genes in animals genetically divergent for Residual Feed Intake (RFI), using RNA sequencing methodology (RNA-seq) to obtain information from genome-wide expression profiles in the liver tissues of Nelore cattle. RESULTS: Differential gene expression analysis between high Residual Feed Intake (HRFI, inefficient) and low Residual Feed Intake (LRFI, efficient) groups was performed to provide insights into the molecular mechanisms that underlie feed efficiency-related traits in beef cattle. A total of 112 annotated genes were identified as being differentially expressed between animals with divergent RFI phenotypes. These genes are involved in ion transport and metal ion binding; act as membrane or transmembrane proteins; and belong to gene clusters that are likely related to the transport and catalysis of molecules through the cell membrane and essential mechanisms of nutrient absorption. Genes with functions in cellular signaling, growth and proliferation, cell death and survival were also differentially expressed. Among the over-represented pathways were drug or xenobiotic metabolism, complement and coagulation cascades, NRF2-mediated oxidative stress, melatonin degradation and glutathione metabolism. CONCLUSIONS: Our data provide new insights and perspectives on the genetic basis of feed efficiency in cattle. Some previously identified mechanisms were supported and new pathways controlling feed efficiency in Nelore cattle were discovered. We potentially identified genes and pathways that play key roles in hepatic metabolic adaptations to oxidative stress such as those involved in antioxidant mechanisms. These results improve our understanding of the metabolic mechanisms underlying feed efficiency in beef cattle and will help develop strategies for selection towards the desired phenotype.


Subject(s)
Cattle/genetics , Liver/metabolism , Meat , Transcriptome , Animal Feed , Animals , Cattle/metabolism , Digestion , Meat/economics , Phenotype
11.
BMC Genet ; 15: 100, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25257854

ABSTRACT

BACKGROUND: Feed efficiency is jointly determined by productivity and feed requirements, both of which are economically relevant traits in beef cattle production systems. The objective of this study was to identify genes/QTLs associated with components of feed efficiency in Nelore cattle using Illumina BovineHD BeadChip (770 k SNP) genotypes from 593 Nelore steers. The traits analyzed included: average daily gain (ADG), dry matter intake (DMI), feed-conversion ratio (FCR), feed efficiency (FE), residual feed intake (RFI), maintenance efficiency (ME), efficiency of gain (EG), partial efficiency of growth (PEG) and relative growth rate (RGR). The Bayes B analysis was completed with Gensel software parameterized to fit fewer markers than animals. Genomic windows containing all the SNP loci in each 1 Mb that accounted for more than 1.0% of genetic variance were considered as QTL region. Candidate genes within windows that explained more than 1% of genetic variance were selected by putative function based on DAVID and Gene Ontology. RESULTS: Thirty-six QTL (1-Mb SNP window) were identified on chromosomes 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 24, 25 and 26 (UMD 3.1). The amount of genetic variance explained by individual QTL windows for feed efficiency traits ranged from 0.5% to 9.07%. Some of these QTL minimally overlapped with previously reported feed efficiency QTL for Bos taurus. The QTL regions described in this study harbor genes with biological functions related to metabolic processes, lipid and protein metabolism, generation of energy and growth. Among the positional candidate genes selected for feed efficiency are: HRH4, ALDH7A1, APOA2, LIN7C, CXADR, ADAM12 and MAP7. CONCLUSIONS: Some genomic regions and some positional candidate genes reported in this study have not been previously reported for feed efficiency traits in Bos indicus. Comparison with published results indicates that different QTLs and genes may be involved in the control of feed efficiency traits in this Nelore cattle population, as compared to Bos taurus cattle.


Subject(s)
Eating/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Animal Feed , Animals , Bayes Theorem , Cattle , Genetic Association Studies , Genotype , Male , Phenotype , Weight Gain/genetics
12.
BMC Genet ; 15: 39, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24666668

ABSTRACT

BACKGROUND: Meat from Bos taurus and Bos indicus breeds are an important source of nutrients for humans and intramuscular fat (IMF) influences its flavor, nutritional value and impacts human health. Human consumption of fat that contains high levels of monounsaturated fatty acids (MUFA) can reduce the concentration of undesirable cholesterol (LDL) in circulating blood. Different feeding practices and genetic variation within and between breeds influences the amount of IMF and fatty acid (FA) composition in meat. However, it is difficult and costly to determine fatty acid composition, which has precluded beef cattle breeding programs from selecting for a healthier fatty acid profile. In this study, we employed a high-density single nucleotide polymorphism (SNP) chip to genotype 386 Nellore steers, a Bos indicus breed and, a Bayesian approach to identify genomic regions and putative candidate genes that could be involved with deposition and composition of IMF. RESULTS: Twenty-three genomic regions (1-Mb SNP windows) associated with IMF deposition and FA composition that each explain ≥1% of the genetic variance were identified on chromosomes 2, 3, 6, 7, 8, 9, 10, 11, 12, 17, 26 and 27. Many of these regions were not previously detected in other breeds. The genes present in these regions were identified and some can help explain the genetic basis of deposition and composition of fat in cattle. CONCLUSIONS: The genomic regions and genes identified contribute to a better understanding of the genetic control of fatty acid deposition and can lead to DNA-based selection strategies to improve meat quality for human consumption.


Subject(s)
Adiposity , Cattle/genetics , Muscle, Skeletal/chemistry , Animals , Bayes Theorem , Breeding , Fatty Acids/chemistry , Genetic Association Studies , Male , Meat , Polymorphism, Single Nucleotide , Quantitative Trait Loci
13.
J Dairy Res ; 78(2): 178-83, 2011 May.
Article in English | MEDLINE | ID: mdl-21371360

ABSTRACT

The objectives of this study were to analyse buffalo milk fat composition, to verify the activity of Delta(9)-desaturase enzyme in the mammary gland, as well as to estimate additive genetic variances for milk, fat and protein yield, and milk cis-9,trans-11 conjugated linoleic acid percentage (cis-9,trans-11 CLA%). A total of 3929 lactation milk yields (MY) records from 2130 buffaloes and 1598 lactation fat (FY) and protein (PY) yield records from 914 buffaloes were analysed. For cis-9,trans-11 CLA%percentage, a total of 661 milk samples from 225 buffaloes, daughters of 8 sires, belonging to 4 herds and calving in 2003 and 2004, were used. The genetic parameters and variance components were estimated by Restricted Maximum Likelihood applying an animal model. The fixed effects considered in the model were: contemporary group (herd, year, calving season) and age at calving (linear and quadratic effects) and lactation length (linear and quadratic effects) as covariables. Additive genetic and permanent environment effects were considered as random. The MY, FY, PY and CLA% means were 1482±355 kg, 90.1±24.6 kg, 56.9±15.2 kg and 0.69±0.16%, respectively. Heritability estimates for MY, FY, PY and CLA% were 0.28±0.05, 0.26±0.11, 0.25±0.11 and 0.35±0.14, respectively. There is enough additive genetic variation for buffalo milk, protein and fat yield to improve these traits through selection. The cis-9,trans-11 CLA% can be enhanced by selection in buffaloes and will contribute to improving human health. The activity and efficiency of Delta(9)-desaturase in the mammary was measured and confirmed.


Subject(s)
Buffaloes/metabolism , Fatty Acids/metabolism , Linoleic Acids, Conjugated/metabolism , Milk/chemistry , Animals , Buffaloes/genetics , Fatty Acids/chemistry , Female , Gene Expression Regulation, Enzymologic , Genetic Variation , Linoleic Acids, Conjugated/chemistry , Mammary Glands, Animal/enzymology , Milk/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism
14.
Genet. mol. biol ; 29(1): 180-186, 2006. tab, graf
Article in English | LILACS | ID: lil-424756

ABSTRACT

We describe an efficient in vitro assay to test growth hormone effects on mRNA levels and fatty acid synthase (FAS, EC. 2.3.1.85) activity. Swine adipose tissue explants were long-term cultured in medium containing growth hormone and FAS mRNA levels and enzyme activity were measured. We quantified FAS transcripts by competitive reverse transcriptase PCR (RT-PCR) using total RNA from cultured adipose tissue explants and RT-PCR standard-curves were constructed using a cloned 307 bp segment of native FAS cDNA and a shorter fragment from which a 64 bp (competitor, 243 bp) internal sequence had been deleted. A known amount of competitor was added to each PCR as an internal control and æ-actin transcripts were also measured to correct for differences in total RNA extraction and reverse transcription efficiency. In cultures with added growth hormone FAS mRNA levels decreased 70 percent (p < 0.01) and FAS enzyme activity decreased 22 percent (p < 0.05). These in vitro growth hormone effects were consistent with those observed in vivo, showing that in vitro adipose tissue culture combined with RT-PCR is a useful and accurate tool for studying growth hormone modulation of adipose tissue metabolism. This technique allowed the diagnosis of lower levels of FAS mRNA in the presence of growth hormone and these low levels were associated with decreased FAS activity in the adipose tissue explants.


Subject(s)
Animals , Fatty Acid Synthases/genetics , Growth Hormone/pharmacology , RNA, Messenger , Swine/genetics , Adipose Tissue , Enzymes , Reverse Transcriptase Polymerase Chain Reaction
15.
Endocr Res ; 30(2): 225-38, 2004 May.
Article in English | MEDLINE | ID: mdl-15473132

ABSTRACT

Growth hormone treatment (GH) decreases adipose tissue sensitivity to insulin. However, the exact molecular mechanism(s) involved remains unclear. In the present study, we have evaluated the chronic effects of GH on adipose tissue explants cultured in a defined media. The objective was to determine the effects of GH treatment for 24 and 48 hours on the early steps of the insulin signal transduction, including IRS-3. The 24-hour culture media contained no hormones or 100 ng/ml GH. The 48-hour culture media contained insulin and dexamethasone supplemented with or without 100 ng/ml of GH. Results demonstrated a reduction in the cellular concentration of IRS-1 by around 30% when adipose tissue was chronically treated with growth hormone for either 24 or 48 hours. IRS-3 protein levels were also decreased by 15% after the 24-hour treatment, and by 27% after culture with GH for 48 hours in the presence of insulin and dexamethasone. PI 3-kinase concentrations were also reduced by GH in both experiments by around 25%. At the end of the 24-hour culture with GH adipose explants were stimulated with insulin in a short-term incubation, after which phosphorylation and association of the IRSs with PI 3-kinase were evaluated. After the insulin stimulus, the association of PI 3-kinase with IRS-1 and IRS-3 were decreased in explants chronically cultured with GH by 44 and 28%, respectively. After this short-term insulin stimulus, the IRS-3 phosphorylation was also lowered in GH-treated explants. The results with chronic cultures of adipose presented here are consistent with similar changes in IRS-1 and IRS-2 concentration and phosphorylation observed for liver and muscle after long-term (3-5 days) in vivo treatment with GH. The data suggest that chronic GH treatment alters the early steps of the insulin signal transduction pathway, and may explain the changes in adipose tissue sensitivity to insulin.


Subject(s)
Adipose Tissue/metabolism , Human Growth Hormone/pharmacology , Insulin/metabolism , Signal Transduction/drug effects , Animals , Dexamethasone/pharmacology , Drug Administration Schedule , Glucocorticoids/pharmacology , Human Growth Hormone/administration & dosage , In Vitro Techniques , Insulin/pharmacology , Insulin Receptor Substrate Proteins , Male , Osmolar Concentration , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/metabolism , Phosphorylation/drug effects , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...