Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
2.
Oncoimmunology ; 13(1): 2330194, 2024.
Article in English | MEDLINE | ID: mdl-38516270

ABSTRACT

Colorectal cancer (CRC) is the third most prevalent cancer worldwide with a high mortality rate (20-30%), especially due to metastasis to adjacent organs. Clinical responses to chemotherapy, radiation, targeted and immunotherapies are limited to a subset of patients making metastatic CRC (mCRC) difficult to treat. To understand the therapeutic modulation of immune response in mCRC, we have used a genetically engineered mouse model (GEMM), "KPN", which resembles the human 'CMS4'-like subtype. We show here that transforming growth factor (TGF-ß1), secreted by KPN organoids, increases cancer cell proliferation, and inhibits splenocyte activation in vitro. TGF-ß1 also inhibits activation of naive but not pre-activated T cells, suggesting differential effects on specific immune cells. In vivo, the inhibition of TGF-ß inflames the KPN tumors, causing infiltration of T cells, monocytes and monocytic intermediates, while reducing neutrophils and epithelial cells. Co-inhibition of TGF-ß and PD-L1 signaling further enhances cytotoxic CD8+T cells and upregulates innate immune response and interferon gene signatures. However, simultaneous upregulation of cancer-related metabolic genes correlated with limited control of tumor burden and/or progression despite combination treatment. Our study illustrates the importance of using GEMMs to predict better immunotherapies for mCRC.


Subject(s)
Colonic Neoplasms , Rectal Neoplasms , Mice , Animals , Humans , Transforming Growth Factor beta1 , Transforming Growth Factor beta/metabolism , Interferons , B7-H1 Antigen/genetics , T-Lymphocytes, Cytotoxic/metabolism
3.
Clin Cancer Res ; 30(8): 1518-1529, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38493804

ABSTRACT

PURPOSE: The current approach for molecular subtyping of colon cancer relies on gene expression profiling, which is invasive and has limited ability to reveal dynamics and spatial heterogeneity. Molecular imaging techniques, such as PET, present a noninvasive alternative for visualizing biological information from tumors. However, the factors influencing PET imaging phenotype, the suitable PET radiotracers for differentiating tumor subtypes, and the relationship between PET phenotypes and tumor genotype or gene expression-based subtyping remain unknown. EXPERIMENTAL DESIGN: In this study, we conducted 126 PET scans using four different metabolic PET tracers, [18F]fluorodeoxy-D-glucose ([18F]FDG), O-(2-[18F]fluoroethyl)-l-tyrosine ([18F]FET), 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT), and [11C]acetate ([11C]ACE), using a spectrum of five preclinical colon cancer models with varying genetics (BMT, AKPN, AK, AKPT, KPN), at three sites (subcutaneous, orthograft, autochthonous) and at two tumor stages (primary vs. metastatic). RESULTS: The results demonstrate that imaging signatures are influenced by genotype, tumor environment, and stage. PET imaging signatures exhibited significant heterogeneity, with each cancer model displaying distinct radiotracer profiles. Oncogenic Kras and Apc loss showed the most distinctive imaging features, with [18F]FLT and [18F]FET being particularly effective, respectively. The tissue environment notably impacted [18F]FDG uptake, and in a metastatic model, [18F]FET demonstrated higher uptake. CONCLUSIONS: By examining factors contributing to PET-imaging phenotype, this study establishes the feasibility of noninvasive molecular stratification using multiplex radiotracer PET. It lays the foundation for further exploration of PET-based subtyping in human cancer, thereby facilitating noninvasive molecular diagnosis.


Subject(s)
Colonic Neoplasms , Fluorodeoxyglucose F18 , Humans , Dideoxynucleosides , Positron-Emission Tomography/methods , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/genetics , Radiopharmaceuticals
4.
Cancer Res Commun ; 4(2): 588-606, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38358352

ABSTRACT

Neutrophils are a highly heterogeneous cellular population. However, a thorough examination of the different transcriptional neutrophil states between health and malignancy has not been performed. We utilized single-cell RNA sequencing of human and murine datasets, both publicly available and independently generated, to identify neutrophil transcriptomic subtypes and developmental lineages in health and malignancy. Datasets of lung, breast, and colorectal cancer were integrated to establish and validate neutrophil gene signatures. Pseudotime analysis was used to identify genes driving neutrophil development from health to cancer. Finally, ligand-receptor interactions and signaling pathways between neutrophils and other immune cell populations in primary colorectal cancer and metastatic colorectal cancer were investigated. We define two main neutrophil subtypes in primary tumors: an activated subtype sharing the transcriptomic signatures of healthy neutrophils; and a tumor-specific subtype. This signature is conserved in murine and human cancer, across different tumor types. In colorectal cancer metastases, neutrophils are more heterogeneous, exhibiting additional transcriptomic subtypes. Pseudotime analysis implicates IL1ß/CXCL8/CXCR2 axis in the progression of neutrophils from health to cancer and metastasis, with effects on T-cell effector function. Functional analysis of neutrophil-tumoroid cocultures and T-cell proliferation assays using orthotopic metastatic mouse models lacking Cxcr2 in neutrophils support our transcriptional analysis. We propose that the emergence of metastatic-specific neutrophil subtypes is driven by the IL1ß/CXCL8/CXCR2 axis, with the evolution of different transcriptomic signals that impair T-cell function at the metastatic site. Thus, a better understanding of neutrophil transcriptomic programming could optimize immunotherapeutic interventions into early and late interventions, targeting different neutrophil states. SIGNIFICANCE: We identify two recurring neutrophil populations and demonstrate their staged evolution from health to malignancy through the IL1ß/CXCL8/CXCR2 axis, allowing for immunotherapeutic neutrophil-targeting approaches to counteract immunosuppressive subtypes that emerge in metastasis.


Subject(s)
Colorectal Neoplasms , Neutrophils , Animals , Mice , Humans , Neoplasm Recurrence, Local/metabolism , Signal Transduction/genetics , Colorectal Neoplasms/genetics , Single-Cell Analysis
5.
J Exp Clin Cancer Res ; 43(1): 64, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38424636

ABSTRACT

Colorectal cancer (CRC) is a heterogenous malignancy underpinned by dysregulation of cellular signaling pathways. Previous literature has implicated aberrant JAK/STAT3 signal transduction in the development and progression of solid tumors. In this study we investigate the effectiveness of inhibiting JAK/STAT3 in diverse CRC models, establish in which contexts high pathway expression is prognostic and perform in depth analysis underlying phenotypes. In this study we investigated the use of JAK inhibitors for anti-cancer activity in CRC cell lines, mouse model organoids and patient-derived organoids. Immunohistochemical staining of the TransSCOT clinical trial cohort, and 2 independent large retrospective CRC patient cohorts was performed to assess the prognostic value of JAK/STAT3 expression. We performed mutational profiling, bulk RNASeq and NanoString GeoMx® spatial transcriptomics to unravel the underlying biology of aberrant signaling. Inhibition of signal transduction with JAK1/2 but not JAK2/3 inhibitors reduced cell viability in CRC cell lines, mouse, and patient derived organoids (PDOs). In PDOs, reduced Ki67 expression was observed post-treatment. A highly significant association between high JAK/STAT3 expression within tumor cells and reduced cancer-specific survival in patients with high stromal invasion (TSPhigh) was identified across 3 independent CRC patient cohorts, including the TrasnSCOT clinical trial cohort. Patients with high phosphorylated STAT3 (pSTAT3) within the TSPhigh group had higher influx of CD66b + cells and higher tumoral expression of PDL1. Bulk RNAseq of full section tumors showed enrichment of NFκB signaling and hypoxia in these cases. Spatial deconvolution through GeoMx® demonstrated higher expression of checkpoint and hypoxia-associated genes in the tumor (pan-cytokeratin positive) regions, and reduced lymphocyte receptor signaling in the TME (pan-cytokeratin- and αSMA-) and αSMA (pan-cytokeratin- and αSMA +) areas. Non-classical fibroblast signatures were detected across αSMA + regions in cases with high pSTAT3. Therefore, in this study we have shown that inhibition of JAK/STAT3 represents a promising therapeutic strategy for patients with stromal-rich CRC tumors. High expression of JAK/STAT3 proteins within both tumor and stromal cells predicts poor outcomes in CRC, and aberrant signaling is associated with distinct spatially-dependant differential gene expression.


Subject(s)
Colorectal Neoplasms , Humans , Animals , Mice , Retrospective Studies , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Signal Transduction , Hypoxia , Keratins/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Cell Line, Tumor
6.
Nat Genet ; 56(3): 458-472, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38351382

ABSTRACT

Molecular stratification using gene-level transcriptional data has identified subtypes with distinctive genotypic and phenotypic traits, as exemplified by the consensus molecular subtypes (CMS) in colorectal cancer (CRC). Here, rather than gene-level data, we make use of gene ontology and biological activation state information for initial molecular class discovery. In doing so, we defined three pathway-derived subtypes (PDS) in CRC: PDS1 tumors, which are canonical/LGR5+ stem-rich, highly proliferative and display good prognosis; PDS2 tumors, which are regenerative/ANXA1+ stem-rich, with elevated stromal and immune tumor microenvironmental lineages; and PDS3 tumors, which represent a previously overlooked slow-cycling subset of tumors within CMS2 with reduced stem populations and increased differentiated lineages, particularly enterocytes and enteroendocrine cells, yet display the worst prognosis in locally advanced disease. These PDS3 phenotypic traits are evident across numerous bulk and single-cell datasets, and demark a series of subtle biological states that are currently under-represented in pre-clinical models and are not identified using existing subtyping classifiers.


Subject(s)
Colorectal Neoplasms , Humans , Colorectal Neoplasms/pathology , Prognosis , Cell Differentiation/genetics , Phenotype , Biomarkers, Tumor/genetics , Gene Expression Profiling
7.
Nat Commun ; 15(1): 646, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245513

ABSTRACT

Bioengineered probiotics enable new opportunities to improve colorectal cancer (CRC) screening, prevention and treatment. Here, first, we demonstrate selective colonization of colorectal adenomas after oral delivery of probiotic E. coli Nissle 1917 (EcN) to a genetically-engineered murine model of CRC predisposition and orthotopic models of CRC. We next undertake an interventional, double-blind, dual-centre, prospective clinical trial, in which CRC patients take either placebo or EcN for two weeks prior to resection of neoplastic and adjacent normal colorectal tissue (ACTRN12619000210178). We detect enrichment of EcN in tumor samples over normal tissue from probiotic-treated patients (primary outcome of the trial). Next, we develop early CRC intervention strategies. To detect lesions, we engineer EcN to produce a small molecule, salicylate. Oral delivery of this strain results in increased levels of salicylate in the urine of adenoma-bearing mice, in comparison to healthy controls. To assess therapeutic potential, we engineer EcN to locally release a cytokine, GM-CSF, and blocking nanobodies against PD-L1 and CTLA-4 at the neoplastic site, and demonstrate that oral delivery of this strain reduces adenoma burden by ~50%. Together, these results support the use of EcN as an orally-deliverable platform to detect disease and treat CRC through the production of screening and therapeutic molecules.


Subject(s)
Adenoma , Colorectal Neoplasms , Animals , Humans , Mice , Adenoma/diagnosis , Adenoma/therapy , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Escherichia coli/genetics , Prospective Studies , Salicylates , Double-Blind Method
8.
bioRxiv ; 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38106050

ABSTRACT

Targeting cancer stem cells (CSCs) is crucial for effective cancer treatment 1 . However, the molecular mechanisms underlying resistance to LGR5 + CSCs depletion in colorectal cancer (CRC) 2,3 remain largely elusive. Here, we unveil the existence of a primitive cell state dubbed the oncofetal (OnF) state, which works in tandem with the LGR5 + stem cells (SCs) to fuel tumor evolution in CRC. OnF cells emerge early during intestinal tumorigenesis and exhibit features of lineage plasticity. Normally suppressed by the Retinoid X Receptor (RXR) in mature SCs, the OnF program is triggered by genetic deletion of the gatekeeper APC. We demonstrate that diminished RXR activity unlocks an epigenetic circuity governed by the cooperative action of YAP and AP1, leading to OnF reprogramming. This high-plasticity state is inherently resistant to conventional chemotherapies and its adoption by LGR5 + CSCs enables them to enter a drug-tolerant state. Furthermore, through phenotypic tracing and ablation experiments, we uncover a functional redundancy between the OnF and stem cell (SC) states and show that targeting both cellular states is essential for sustained tumor regression in vivo . Collectively, these findings establish a mechanistic foundation for developing effective combination therapies with enduring impact on CRC treatment.

9.
Nat Commun ; 14(1): 6909, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37907525

ABSTRACT

Osteoarthritis (OA) is characterised by an irreversible degeneration of articular cartilage. Here we show that the BMP-antagonist Gremlin 1 (Grem1) marks a bipotent chondrogenic and osteogenic progenitor cell population within the articular surface. Notably, these progenitors are depleted by injury-induced OA and increasing age. OA is also caused by ablation of Grem1 cells in mice. Transcriptomic and functional analysis in mice found that articular surface Grem1-lineage cells are dependent on Foxo1 and ablation of Foxo1 in Grem1-lineage cells caused OA. FGFR3 signalling was confirmed as a promising therapeutic pathway by administration of pathway activator, FGF18, resulting in Grem1-lineage chondrocyte progenitor cell proliferation, increased cartilage thickness and reduced OA. These findings suggest that OA, in part, is caused by mechanical, developmental or age-related attrition of Grem1 expressing articular cartilage progenitor cells. These cells, and the FGFR3 signalling pathway that sustains them, may be effective future targets for biological management of OA.


Subject(s)
Cartilage, Articular , Osteoarthritis , Mice , Animals , Osteoarthritis/genetics , Osteoarthritis/metabolism , Stem Cells/metabolism , Cells, Cultured , Gene Expression Profiling , Osteogenesis , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Intercellular Signaling Peptides and Proteins/metabolism
10.
Nat Metab ; 5(8): 1303-1318, 2023 08.
Article in English | MEDLINE | ID: mdl-37580540

ABSTRACT

The genomic landscape of colorectal cancer (CRC) is shaped by inactivating mutations in tumour suppressors such as APC, and oncogenic mutations such as mutant KRAS. Here we used genetically engineered mouse models, and multimodal mass spectrometry-based metabolomics to study the impact of common genetic drivers of CRC on the metabolic landscape of the intestine. We show that untargeted metabolic profiling can be applied to stratify intestinal tissues according to underlying genetic alterations, and use mass spectrometry imaging to identify tumour, stromal and normal adjacent tissues. By identifying ions that drive variation between normal and transformed tissues, we found dysregulation of the methionine cycle to be a hallmark of APC-deficient CRC. Loss of Apc in the mouse intestine was found to be sufficient to drive expression of one of its enzymes, adenosylhomocysteinase (AHCY), which was also found to be transcriptionally upregulated in human CRC. Targeting of AHCY function impaired growth of APC-deficient organoids in vitro, and prevented the characteristic hyperproliferative/crypt progenitor phenotype driven by acute deletion of Apc in vivo, even in the context of mutant Kras. Finally, pharmacological inhibition of AHCY reduced intestinal tumour burden in ApcMin/+ mice indicating its potential as a metabolic drug target in CRC.


Subject(s)
Colorectal Neoplasms , Animals , Humans , Mice , Adenosylhomocysteinase/genetics , Adenosylhomocysteinase/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Metabolomics , Mutation , Proto-Oncogene Proteins p21(ras)/genetics
11.
bioRxiv ; 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37066243

ABSTRACT

Bioengineered probiotics enable new opportunities to improve colorectal cancer (CRC) screening, prevention and treatment strategies. Here, we demonstrate the phenomenon of selective, long-term colonization of colorectal adenomas after oral delivery of probiotic E. coli Nissle 1917 (EcN) to a genetically-engineered murine model of CRC predisposition. We show that, after oral administration, adenomas can be monitored over time by recovering EcN from stool. We also demonstrate specific colonization of EcN to solitary neoplastic lesions in an orthotopic murine model of CRC. We then exploit this neoplasia-homing property of EcN to develop early CRC intervention strategies. To detect lesions, we engineer EcN to produce a small molecule, salicylate, and demonstrate that oral delivery of this strain results in significantly increased levels of salicylate in the urine of adenoma-bearing mice, in comparison to healthy controls. We also assess EcN engineered to locally release immunotherapeutics at the neoplastic site. Oral delivery to mice bearing adenomas, reduced adenoma burden by ∻50%, with notable differences in the spatial distribution of T cell populations within diseased and healthy intestinal tissue, suggesting local induction of robust anti-tumor immunity. Together, these results support the use of EcN as an orally-delivered platform to detect disease and treat CRC through its production of screening and therapeutic molecules.

12.
bioRxiv ; 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37034712

ABSTRACT

Osteoarthritis (OA), which carries an enormous disease burden across the world, is characterised by irreversible degeneration of articular cartilage (AC), and subsequently bone. The cellular cause of OA is unknown. Here, using lineage tracing in mice, we show that the BMP-antagonist Gremlin 1 (Grem1) marks a novel chondrogenic progenitor (CP) cell population in the articular surface that generates joint cartilage and subchondral bone during development and adulthood. Notably, this CP population is depleted in injury-induced OA, and with age. OA is also induced by toxin-mediated ablation of Grem1 CP cells in young mice. Transcriptomic analysis and functional modelling in mice revealed articular surface Grem1-lineage cells are dependent on Foxo1; ablation of Foxo1 in Grem1-lineage cells led to early OA. This analysis identified FGFR3 signalling as a therapeutic target, and injection of its activator, FGF18, caused proliferation of Grem1-lineage CP cells, increased cartilage thickness, and reduced OA pathology. We propose that OA arises from the loss of CP cells at the articular surface secondary to an imbalance in progenitor cell homeostasis and present a new progenitor population as a locus for OA therapy.

13.
Br J Cancer ; 128(7): 1333-1343, 2023 03.
Article in English | MEDLINE | ID: mdl-36717674

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) primary tumours are molecularly classified into four consensus molecular subtypes (CMS1-4). Genetically engineered mouse models aim to faithfully mimic the complexity of human cancers and, when appropriately aligned, represent ideal pre-clinical systems to test new drug treatments. Despite its importance, dual-species classification has been limited by the lack of a reliable approach. Here we utilise, develop and test a set of options for human-to-mouse CMS classifications of CRC tissue. METHODS: Using transcriptional data from established collections of CRC tumours, including human (TCGA cohort; n = 577) and mouse (n = 57 across n = 8 genotypes) tumours with combinations of random forest and nearest template prediction algorithms, alongside gene ontology collections, we comprehensively assess the performance of a suite of new dual-species classifiers. RESULTS: We developed three approaches: MmCMS-A; a gene-level classifier, MmCMS-B; an ontology-level approach and MmCMS-C; a combined pathway system encompassing multiple biological and histological signalling cascades. Although all options could identify tumours associated with stromal-rich CMS4-like biology, MmCMS-A was unable to accurately classify the biology underpinning epithelial-like subtypes (CMS2/3) in mouse tumours. CONCLUSIONS: When applying human-based transcriptional classifiers to mouse tumour data, a pathway-level classifier, rather than an individual gene-level system, is optimal. Our R package enables researchers to select suitable mouse models of human CRC subtype for their experimental testing.


Subject(s)
Colorectal Neoplasms , Humans , Animals , Mice , Colorectal Neoplasms/pathology , Disease Models, Animal , Signal Transduction
15.
Nat Commun ; 13(1): 5317, 2022 09 09.
Article in English | MEDLINE | ID: mdl-36085324

ABSTRACT

Single cell profiling by genetic, proteomic and imaging methods has expanded the ability to identify programmes regulating distinct cell states. The 3-dimensional (3D) culture of cells or tissue fragments provides a system to study how such states contribute to multicellular morphogenesis. Whether cells plated into 3D cultures give rise to a singular phenotype or whether multiple biologically distinct phenotypes arise in parallel is largely unknown due to a lack of tools to detect such heterogeneity. Here we develop Traject3d (Trajectory identification in 3D), a method for identifying heterogeneous states in 3D culture and how these give rise to distinct phenotypes over time, from label-free multi-day time-lapse imaging. We use this to characterise the temporal landscape of morphological states of cancer cell lines, varying in metastatic potential and drug resistance, and use this information to identify drug combinations that inhibit such heterogeneity. Traject3d is therefore an important companion to other single-cell technologies by facilitating real-time identification via live imaging of how distinct states can lead to alternate phenotypes that occur in parallel in 3D culture.


Subject(s)
Neoplasms , Proteomics , Diagnostic Imaging , Humans , Neoplasms/diagnostic imaging , Phenotype
16.
Cell Stem Cell ; 29(8): 1213-1228.e8, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35931031

ABSTRACT

Intestinal homeostasis is underpinned by LGR5+ve crypt-base columnar stem cells (CBCs), but following injury, dedifferentiation results in the emergence of LGR5-ve regenerative stem cell populations (RSCs), characterized by fetal transcriptional profiles. Neoplasia hijacks regenerative signaling, so we assessed the distribution of CBCs and RSCs in mouse and human intestinal tumors. Using combined molecular-morphological analysis, we demonstrate variable expression of stem cell markers across a range of lesions. The degree of CBC-RSC admixture was associated with both epithelial mutation and microenvironmental signaling disruption and could be mapped across disease molecular subtypes. The CBC-RSC equilibrium was adaptive, with a dynamic response to acute selective pressure, and adaptability was associated with chemoresistance. We propose a fitness landscape model where individual tumors have equilibrated stem cell population distributions along a CBC-RSC phenotypic axis. Cellular plasticity is represented by position shift along this axis and is influenced by cell-intrinsic, extrinsic, and therapeutic selective pressures.


Subject(s)
Colorectal Neoplasms , Intestinal Mucosa , Animals , Colorectal Neoplasms/pathology , Homeostasis/physiology , Humans , Intestinal Mucosa/metabolism , Intestines , Mice , Neoplastic Stem Cells/pathology , Receptors, G-Protein-Coupled/metabolism
17.
Gut ; 71(12): 2502-2517, 2022 12.
Article in English | MEDLINE | ID: mdl-35477539

ABSTRACT

OBJECTIVE: Stroma-rich tumours represent a poor prognostic subtype in stage II/III colon cancer (CC), with high relapse rates and limited response to standard adjuvant chemotherapy. DESIGN: To address the lack of efficacious therapeutic options for patients with stroma-rich CC, we stratified our human tumour cohorts according to stromal content, enabling identification of the biology underpinning relapse and potential therapeutic vulnerabilities specifically within stroma-rich tumours that could be exploited clinically. Following human tumour-based discovery and independent clinical validation, we use a series of in vitro and stroma-rich in vivo models to test and validate the therapeutic potential of elevating the biology associated with reduced relapse in human tumours. RESULTS: By performing our analyses specifically within the stroma-rich/high-fibroblast (HiFi) subtype of CC, we identify and validate the clinical value of a HiFi-specific prognostic signature (HPS), which stratifies tumours based on STAT1-related signalling (High-HPS v Low-HPS=HR 0.093, CI 0.019 to 0.466). Using in silico, in vitro and in vivo models, we demonstrate that the HPS is associated with antigen processing and presentation within discrete immune lineages in stroma-rich CC, downstream of double-stranded RNA and viral response signalling. Treatment with the TLR3 agonist poly(I:C) elevated the HPS signalling and antigen processing phenotype across in vitro and in vivo models. In an in vivo model of stroma-rich CC, poly(I:C) treatment significantly increased systemic cytotoxic T cell activity (p<0.05) and reduced liver metastases (p<0.0002). CONCLUSION: This study reveals new biological insight that offers a novel therapeutic option to reduce relapse rates in patients with the worst prognosis CC.


Subject(s)
Biomarkers, Tumor , Colonic Neoplasms , Humans , Biomarkers, Tumor/genetics , Stromal Cells/pathology , Neoplasm Recurrence, Local/prevention & control , Neoplasm Recurrence, Local/pathology , Colonic Neoplasms/pathology , Prognosis
18.
Dis Model Mech ; 15(3)2022 03 01.
Article in English | MEDLINE | ID: mdl-35112706

ABSTRACT

Generation of transcriptional data has dramatically increased in the past decade, driving the development of analytical algorithms that enable interrogation of the biology underpinning the profiled samples. However, these resources require users to have expertise in data wrangling and analytics, reducing opportunities for biological discovery by 'wet-lab' users with a limited programming skillset. Although commercial solutions exist, costs for software access can be prohibitive for academic research groups. To address these challenges, we have developed an open source and user-friendly data analysis platform for on-the-fly bioinformatic interrogation of transcriptional data derived from human or mouse tissue, called Molecular Subtyping Resource (MouSR). This internet-accessible analytical tool, https://mousr.qub.ac.uk/, enables users to easily interrogate their data using an intuitive 'point-and-click' interface, which includes a suite of molecular characterisation options including quality control, differential gene expression, gene set enrichment and microenvironmental cell population analyses from RNA sequencing. The MouSR online tool provides a unique freely available option for users to perform rapid transcriptomic analyses and comprehensive interrogation of the signalling underpinning transcriptional datasets, which alleviates a major bottleneck for biological discovery. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Gene Expression Profiling , Software , Algorithms , Animals , Computational Biology , Humans , Mice , Sequence Analysis, RNA
19.
Gastroenterology ; 162(3): 890-906, 2022 03.
Article in English | MEDLINE | ID: mdl-34883119

ABSTRACT

BACKGROUND & AIMS: Cancer-associated fibroblasts (CAFs) play an important role in colorectal cancer (CRC) progression and predict poor prognosis in CRC patients. However, the cellular origins of CAFs remain unknown, making it challenging to therapeutically target these cells. Here, we aimed to identify the origins and contribution of colorectal CAFs associated with poor prognosis. METHODS: To elucidate CAF origins, we used a colitis-associated CRC mouse model in 5 different fate-mapping mouse lines with 5-bromodeoxyuridine dosing. RNA sequencing of fluorescence-activated cell sorting-purified CRC CAFs was performed to identify a potential therapeutic target in CAFs. To examine the prognostic significance of the stromal target, CRC patient RNA sequencing data and tissue microarray were used. CRC organoids were injected into the colons of knockout mice to assess the mechanism by which the stromal gene contributes to colorectal tumorigenesis. RESULTS: Our lineage-tracing studies revealed that in CRC, many ACTA2+ CAFs emerge through proliferation from intestinal pericryptal leptin receptor (Lepr)+ cells. These Lepr-lineage CAFs, in turn, express melanoma cell adhesion molecule (MCAM), a CRC stroma-specific marker that we identified with the use of RNA sequencing. High MCAM expression induced by transforming growth factor ß was inversely associated with patient survival in human CRC. In mice, stromal Mcam knockout attenuated orthotopically injected colorectal tumoroid growth and improved survival through decreased tumor-associated macrophage recruitment. Mechanistically, fibroblast MCAM interacted with interleukin-1 receptor 1 to augment nuclear factor κB-IL34/CCL8 signaling that promotes macrophage chemotaxis. CONCLUSIONS: In colorectal carcinogenesis, pericryptal Lepr-lineage cells proliferate to generate MCAM+ CAFs that shape the tumor-promoting immune microenvironment. Preventing the expansion/differentiation of Lepr-lineage CAFs or inhibiting MCAM activity could be effective therapeutic approaches for CRC.


Subject(s)
Cancer-Associated Fibroblasts/pathology , Cancer-Associated Fibroblasts/physiology , Carcinogenesis/pathology , Cell Lineage , Colorectal Neoplasms/pathology , Mesenchymal Stem Cells/physiology , Actins/genetics , Actins/metabolism , Adult , Aged , Aged, 80 and over , Animals , CD146 Antigen/genetics , CD146 Antigen/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Differentiation , Cell Proliferation , Colorectal Neoplasms/metabolism , Disease Models, Animal , Female , Humans , Intestinal Mucosa/pathology , Ki-67 Antigen/metabolism , Male , Mice , Mice, Transgenic , Middle Aged , Organoids/pathology , Organoids/physiology , Prognosis , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Sequence Analysis, RNA , Survival Rate , Tumor Microenvironment
20.
J Vis Exp ; (175)2021 09 03.
Article in English | MEDLINE | ID: mdl-34542536

ABSTRACT

Hepatic metastasis of colorectal cancer (CRC) is a leading cause of cancer-related death. Cancer-associated fibroblasts (CAFs), a major component of the tumor microenvironment, play a crucial role in metastatic CRC progression and predict poor patient prognosis. However, there is a lack of satisfactory mouse models to study the crosstalk between metastatic cancer cells and CAFs. Here, we present a method to investigate how liver metastasis progression is regulated by the metastatic niche and possibly could be restrained by stroma-directed therapy. Portal vein injection of CRC organoids generated a desmoplastic reaction, which faithfully recapitulated the fibroblast-rich histology of human CRC liver metastases. This model was tissue-specific with a higher tumor burden in the liver when compared to an intra-splenic injection model, simplifying mouse survival analyses. By injecting luciferase-expressing tumor organoids, tumor growth kinetics could be monitored by in vivo imaging. Moreover, this preclinical model provides a useful platform to assess the efficacy of therapeutics targeting the tumor mesenchyme. We describe methods to examine whether adeno-associated virus-mediated delivery of a tumor-inhibiting stromal gene to hepatocytes could remodel the tumor microenvironment and improve mouse survival. This approach enables the development and assessment of novel therapeutic strategies to inhibit hepatic metastasis of CRC.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Animals , Humans , Mice , Organoids , Portal Vein , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...