Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Cells ; 10(7)2021 07 20.
Article in English | MEDLINE | ID: mdl-34360004

ABSTRACT

Microglia are the resident immune cells of the central nervous system contributing substantially to health and disease. There is increasing evidence that inflammatory microglia may induce or accelerate brain aging, by interfering with physiological repair and remodeling processes. Many viral infections affect the brain and interfere with microglia functions, including human immune deficiency virus, flaviviruses, SARS-CoV-2, influenza, and human herpes viruses. Especially chronic viral infections causing low-grade neuroinflammation may contribute to brain aging. This review elucidates the potential role of various neurotropic viruses in microglia-driven neurocognitive deficiencies and possibly accelerated brain aging.


Subject(s)
Aging , Brain/physiopathology , Inflammation/physiopathology , Microglia/virology , Virus Diseases/physiopathology , Animals , Brain/immunology , Brain/virology , COVID-19/immunology , COVID-19/physiopathology , COVID-19/virology , Humans , Inflammation/immunology , Inflammation/virology , Microglia/immunology , Microglia/pathology , SARS-CoV-2/physiology , Virus Diseases/immunology , Virus Diseases/virology
2.
Front Immunol ; 12: 643746, 2021.
Article in English | MEDLINE | ID: mdl-34093532

ABSTRACT

Malaria remains one of the most serious health problems in developing countries. The causative agent of malaria, Plasmodium spp., have a complex life cycle involving multiple developmental stages as well as different morphological, biochemical and metabolic requirements. We recently found that γδ T cells control parasite growth using pore-forming proteins to deliver their cytotoxic proteases, the granzymes, into blood residing parasites. Here, we follow up on the molecular mechanisms of parasite growth inhibition by human pore-forming proteins. We confirm that Plasmodium falciparum infection efficiently depletes the red blood cells of cholesterol, which renders the parasite surrounding membranes susceptible to lysis by prokaryotic membrane disrupting proteins, such as lymphocytic granulysin or the human cathelicidin LL-37. Interestingly, not the cholesterol depletion but rather the simultaneous exposure of phosphatidylserine, a negatively charged phospholipid, triggers resistance of late stage parasitized red blood cells towards the eukaryotic pore forming protein perforin. Overall, by revealing the molecular events we establish here a pathogen-host interaction that involves host cell membrane remodeling that defines the susceptibility towards cytolytic molecules.


Subject(s)
Erythrocyte Membrane/immunology , Hemolysis/immunology , Malaria, Falciparum/immunology , Perforin/immunology , Plasmodium falciparum/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/immunology , Antigens, Differentiation, T-Lymphocyte , Antimicrobial Cationic Peptides/immunology , Disease Susceptibility , Erythrocyte Membrane/parasitology , Humans , Cathelicidins
3.
Pathogens ; 10(3)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801245

ABSTRACT

Human septins comprise a family of 13 genes that encode conserved GTP-binding proteins. They form nonpolar complexes, which assemble into higher-order structures, such as bundles, scaffolding structures, or rings. Septins are counted among the cytoskeletal elements. They interact with the actin and microtubule networks and can bind to membranes. Many cellular functions with septin participation have been described in the literature, including cytokinesis, motility, forming of scaffolding platforms or lateral diffusion barriers, vesicle transport, exocytosis, and recognition of micron-scale curvature. Septin dysfunction has been implicated in diverse human pathologies, including neurodegeneration and tumorigenesis. Moreover, septins are thought to affect the outcome of host-microbe interactions. Implication of septins has been demonstrated in fungal, bacterial, and viral infections. Knowledge on the precise function of a particular septin in the different steps of the virus infection and replication cycle is still limited. Published data for vaccinia virus (VACV), hepatitis C virus (HCV), influenza A virus (H1N1 and H5N1), human herpesvirus 8 (HHV-8), and Zika virus (ZIKV), all of major concern for public health, will be discussed here.

4.
Sci Rep ; 11(1): 778, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436661

ABSTRACT

The human leukemia cell line (HL-60) is an alternative to primary neutrophils in research studies. However, because HL-60 cells proliferate in an incompletely differentiated state, they must undergo differentiation before they acquire the functional properties of neutrophils. Here we provide evidence of swarming and chemotaxis in differentiated HL-60 neutrophil-like cells (dHL-60) using precise microfluidic assays. We found that dimethyl sulfoxide differentiated HL-60 cells (DdHL-60) have a larger size, increased length, and lower ability to squeeze through narrow channels compared to primary neutrophils. They migrate through tapered microfluidic channels slower than primary neutrophils, but faster than HL-60s differentiated by other protocols, e.g., using all-trans retinoic acid. We found that dHL-60 can swarm toward zymosan particle clusters, though they display disorganized migratory patterns and produce swarms of smaller size compared to primary neutrophils.


Subject(s)
Chemotactic Factors/pharmacology , Chemotaxis/physiology , Dimethyl Sulfoxide/pharmacology , Neutrophils/physiology , Tretinoin/pharmacology , Antineoplastic Agents/pharmacology , Cell Differentiation/physiology , Cryoprotective Agents/pharmacology , HL-60 Cells , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/physiology , Neutrophils/cytology , Neutrophils/drug effects
5.
J Immunol ; 204(7): 1798-1809, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32066596

ABSTRACT

Plasmodium spp., the causative agent of malaria, have a complex life cycle. The exponential growth of the parasites during the blood stage is responsible for almost all malaria-associated morbidity and mortality. Therefore, tight immune control of the intraerythrocytic replication of the parasite is essential to prevent clinical malaria. Despite evidence that the particular lymphocyte subset of γδ T cells contributes to protective immunity during the blood stage in naive hosts, their precise inhibitory mechanisms remain unclear. Using human PBMCs, we confirmed in this study that γδ T cells specifically and massively expanded upon activation with Plasmodium falciparum culture supernatant. We also demonstrate that these activated cells gain cytolytic potential by upregulating cytotoxic effector proteins and IFN-γ. The killer cells bound to infected RBCs and killed intracellular P. falciparum via the transfer of the granzymes, which was mediated by granulysin in a stage-specific manner. Several vital plasmodial proteins were efficiently destroyed by granzyme B, suggesting proteolytic degradation of these proteins as essential in the lymphocyte-mediated death pathway. Overall, these data establish a granzyme- and granulysin-mediated innate immune mechanism exerted by γδ T cells to kill late-stage blood-residing P. falciparum.


Subject(s)
Antigens, Differentiation, T-Lymphocyte/immunology , Granzymes/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Antigens, Protozoan/immunology , Cells, Cultured , Erythrocytes/immunology , Humans , Immunity, Innate/immunology , Interferon-gamma/immunology , Killer Cells, Natural/immunology , Leukocytes, Mononuclear/immunology , Life Cycle Stages/immunology , Lymphocyte Activation/immunology , T-Lymphocyte Subsets/immunology , Up-Regulation/immunology
6.
Pathogens ; 9(1)2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31878288

ABSTRACT

Microglia are the chief immune cells of the brain and have been reported to be activated in severe malaria. Their activation may drive towards neuroinflammation in cerebral malaria. Malaria-infected red blood cell derived-extracellular vesicles (MiREVs) are produced during the blood stage of malaria infection. They mediate intercellular communication and immune regulation, among other functions. During cerebral malaria, the breakdown of the blood-brain barrier can promote the migration of substances such as MiREVs from the periphery into the brain, targeting cells such as microglia. Microglia and extracellular vesicle interactions in different pathological conditions have been reported to induce neuroinflammation. Unlike in astrocytes, microglia-extracellular vesicle interaction has not yet been described in malaria infection. Therefore, in this study, we aimed to investigate the uptake of MiREVs by human microglia cells and their cytokine response. Human blood monocyte-derived microglia (MoMi) were generated from buffy coats of anonymous healthy donors using Ficoll-Paque density gradient centrifugation. The MiREVs were isolated from the Plasmodium falciparum cultures. They were purified by ultracentrifugation and labeled with PKH67 green fluorescent dye. The internalization of MiREVs by MoMi was observed after 4 h of co-incubation on coverslips placed in a 24-well plate at 37 °C using confocal microscopy. Cytokine-gene expression was investigated using rt-qPCR, following the stimulation of the MoMi cells with supernatants from the parasite cultures at 2, 4, and 24 h, respectively. MiREVs were internalized by the microglia and accumulated in the perinuclear region. MiREVs-treated cells increased gene expression of the inflammatory cytokine TNFα and reduced gene expression of the immune suppressive IL-10. Overall, the results indicate that MiREVs may act on microglia, which would contribute to enhanced inflammation in cerebral malaria.

7.
Pathogens ; 8(3)2019 Jul 26.
Article in English | MEDLINE | ID: mdl-31357540

ABSTRACT

Japanese encephalitis virus (JEV) is an emerging flavivirus of the Asia-Pacific region. More than two billion people live in endemic or epidemic areas and are at risk of infection. Recently, the first autochthonous human case was recorded in Africa, and infected birds have been found in Europe. JEV may spread even further to other continents. The first section of this review covers established and new information about the epidemiology of JEV. The subsequent sections focus on the impact of JEV on humans, including the natural course and immunity. Furthermore, new concepts are discussed about JEV's entry into the brain. Finally, interactions of JEV and host cells are covered, as well as how JEV may spread in the body through latently infected immune cells and cell-to-cell transmission of virions or via other infectious material, including JEV genomic RNA.

8.
Sci Rep ; 9(1): 4833, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30886214

ABSTRACT

The neurotropic Japanese encephalitis virus (JEV) is responsible for Japanese encephalitis, an uncontrolled inflammatory disease of the central nervous system. Microglia cells are the unique innate immune cell type populating the brain that cross-communicate with neurons via the CX3CR1-CX3CL1 axis. However, microglia may serve as a viral reservoir for JEV. Human microglia are able to transmit JEV infectivity to neighbouring cells in a cell-to-cell contact-dependent manner. Using JEV-treated human blood monocyte-derived microglia, the present study investigates molecular mechanisms behind cell-to-cell virus transmission by human microglia. For that purpose, JEV-associated microglia were co-cultured with JEV susceptible baby hamster kidney cells under various conditions. Here, we show that microglia hosting JEV for up to 10 days were able to transmit the virus to susceptible cells. Interestingly, neutralizing anti-JEV antibodies did not completely abrogate cell-to-cell virus transmission. Hence, intracellular viral RNA could be a contributing source of infectious virus material upon intercellular interactions. Importantly, the CX3CL1-CX3CR1 axis was a key regulator of cell-to-cell virus transmission from JEV-hosting human microglia. Our findings suggest that human microglia may be a source of infection for neuronal populations and sustain JEV brain pathogenesis in long-term infection. Moreover, the present work emphasizes on the critical role of the CX3CR1-CX3CL1 axis in JEV pathogenesis mediating transmission of infectious genomic JEV RNA.


Subject(s)
CX3C Chemokine Receptor 1/metabolism , Chemokine CX3CL1/metabolism , Encephalitis Virus, Japanese/metabolism , Encephalitis, Japanese/transmission , Microglia/virology , Animals , Blood Buffy Coat , Cell Communication , Cell Differentiation , Cell Line , Coculture Techniques , Encephalitis Virus, Japanese/genetics , Encephalitis, Japanese/virology , Fibroblasts , Humans , Leukocytes, Mononuclear , Mesocricetus , Microglia/metabolism , Microscopy, Confocal , Primary Cell Culture , RNA, Viral/metabolism
9.
Nanomedicine ; 14(2): 601-607, 2018 02.
Article in English | MEDLINE | ID: mdl-29155361

ABSTRACT

Bone infections are difficult to treat and can lead to severe tissue destruction. Acute bone infections are usually caused by Staphylococcus aureus. Osteoclasts, which belong to the monocyte/macrophage lineage, are the key cells in bone infections. They are not well equipped for killing bacteria and may serve as a reservoir for bacterial pathogens. Silver has been known for centuries for its bactericidal activity. Here, we investigated the bactericidal effects of nano-silver particles in bacteria infected human osteoclasts. We found that nano-silver in per se non-toxic concentration enhanced the bactericidal activity in osteoclasts against intracellular Methicillin-resistant, virulent Staphylococcus aureus. The reduced bacterial survival in nano-silver pretreated cells correlated with increased reactive oxygen responses towards the invading pathogens. Overall, these results indicate that nano-silver compounds should be considered as an effective treatment and prevention option for bacterial bone and orthopedic implant infections.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Metal Nanoparticles/administration & dosage , Osteoclasts/drug effects , Reactive Oxygen Species/metabolism , Silver/chemistry , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemistry , Cells, Cultured , Humans , Metal Nanoparticles/chemistry , Osteoclasts/pathology , Phagocytosis , Staphylococcal Infections/microbiology , Staphylococcus aureus/isolation & purification
10.
J Neuroinflammation ; 14(1): 158, 2017 08 14.
Article in English | MEDLINE | ID: mdl-28807053

ABSTRACT

BACKGROUND: Uncontrolled inflammatory response of the central nervous system is a hallmark of severe Japanese encephalitis (JE). Although inflammation is necessary to mount an efficient immune response against virus infections, exacerbated inflammatory response is often detrimental. In this context, cells of the monocytic lineage appear to be important forces driving JE pathogenesis. MAIN BODY: Brain-infiltrating monocytes, macrophages and microglia play a major role in central nervous system (CNS) inflammation during JE. Moreover, the role of inflammatory monocytes in viral neuroinvasion during JE and mechanisms of cell entry into the CNS remains unclear. The identification of cellular and molecular actors in JE inflammatory responses may help to understand the mechanisms behind excessive inflammation and to develop therapeutics to treat JE patients. This review addresses the current knowledge about mechanisms of virus neuroinvasion, neuroinflammation and therapeutics critical for JE outcome. CONCLUSION: Understanding the regulation of inflammation in JE is challenging. Elucidation of the remaining open questions will help to the development of therapeutic approaches avoiding detrimental inflammatory responses in JE.


Subject(s)
Central Nervous System/pathology , Encephalitis, Japanese/complications , Inflammation/etiology , Animals , Central Nervous System/virology , Cytokines/metabolism , Encephalitis, Japanese/pathology , Humans , Inflammation/pathology , Models, Biological , Monocytes/immunology , Signal Transduction/physiology
11.
Virol J ; 14(1): 8, 2017 01 14.
Article in English | MEDLINE | ID: mdl-28088249

ABSTRACT

BACKGROUND: Japanese encephalitis virus (JEV) is a neurotropic flavivirus causing mortality and morbidity in humans. Severe Japanese encephalitis cases display strong inflammatory responses in the central nervous system and an accumulation of viral particles in specific brain regions. Microglia cells are the unique brain-resident immune cell population with potent migratory functions and have been proposed to act as a viral reservoir for JEV. Animal models suggest that the targeting of microglia by JEV is partially responsible for inflammatory reactions in the brain. Nevertheless, the interactions between human microglia and JEV are poorly documented. METHODS: Using human primary microglia and a new model of human blood monocyte-derived microglia, the present study explores the interaction between human microglia and JEV as well as the role of these cells in viral transmission to susceptible cells. To achieve this work, vaccine-containing inactivated JEV and two live JEV strains were applied on human microglia. RESULTS: Live JEV was non-cytopathogenic to human microglia but increased levels of CCL2, CXCL9 and CXCL10 in such cultures. Furthermore, human microglia up-regulated the expression of the fraktalkine receptor CX3CR1 upon exposure to both JEV vaccine and live JEV. Although JEV vaccine enhanced MHC class II on all microglia, live JEV enhanced MHC class II mainly on CX3CR1+ microglia cells. Importantly, human microglia supported JEV replication, but infectivity was only transmitted to neighbouring cells in a contact-dependent manner. CONCLUSION: Our findings suggest that human microglia may be a source of neuronal infection and sustain JEV brain pathogenesis.


Subject(s)
Encephalitis Virus, Japanese/physiology , Host-Pathogen Interactions , Microglia/virology , Virus Replication , Cells, Cultured , Chemokines/biosynthesis , Humans
12.
Oncotarget ; 8(69): 114393-114413, 2017 Dec 26.
Article in English | MEDLINE | ID: mdl-29371994

ABSTRACT

Microglia cells are the unique residential macrophages of the central nervous system (CNS). They have a special origin, as they derive from the embryonic yolk sac and enter the developing CNS at a very early stage. They play an important role during CNS development and adult homeostasis. They have a major contribution to adult neurogenesis and neuroinflammation. Thus, they participate in the pathogenesis of neurodegenerative diseases and contribute to aging. They play an important role in sustaining and breaking the blood-brain barrier. As innate immune cells, they contribute substantially to the immune response against infectious agents affecting the CNS. They play also a major role in the growth of tumours of the CNS. Microglia are consequently the key cell population linking the nervous and the immune system. This review covers all different aspects of microglia biology and pathology in a comprehensive way.

13.
PLoS One ; 8(4): e60893, 2013.
Article in English | MEDLINE | ID: mdl-23577175

ABSTRACT

Plasmacytoid dendritic cells (pDC) are the most potent producers of type-I interferon (IFN) and represent the main interferon (IFN)-α source in response to many viruses. Considering the important roles played by type I IFN's, not only as antiviral effectors but also as potent alarming cytokine of the immune system, we investigated how such responses are regulated by various cytokines. To this end, we stimulated enriched pDC in the presence or absence of particular cytokines with a strong activator, CpG DNA, or a weak activator of pDC, foot-and-mouth disease virus (FMDV). Alternatively, we pre-incubated pDC for 16 h before stimulation. The pro-inflammatory cytokines tested Interleukin (IL)-6, IL17A, tumour necrosis factor (TNF)-α did not influence IFN-α responses except TNF-α, which promoted responses induced by FMDV. The haematopoietic cytokines Fms-related tyrosine kinase 3 ligand (Flt3-L) and granulocyte-macrophage colony-stimulating factor (GM-CSF) had enhancing effects on pDC activation at least in one of the protocols tested. IFN-ß and IFN-γ were the most potent at enhancing FMDV-induced IFN-α, up to 10-fold. Interestingly, also the Th2 cytokine IL-4 was an efficient promoter of pDC activity, while IL-10 was the only negative regulator of IFN-α in pDC identified. The cytokines enhancing IFN-α responses also promoted pDC survival in cell culture with the exception of GM-CSF. Taken together this work illustrates how the cytokine network can influence pDC activation, a knowledge of relevance for improving vaccines and therapeutic interventions during virus infections, cancers and autoimmune diseases in which pDC play a role.


Subject(s)
Cytokines/pharmacology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Animals , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Cricetinae , Dendritic Cells/cytology , Drug Synergism , Interferon-alpha/biosynthesis , Swine
14.
Vet Res ; 43: 64, 2012 Aug 30.
Article in English | MEDLINE | ID: mdl-22934974

ABSTRACT

Foot-and-mouth disease virus (FMDV) is a highly infectious member of the Picornaviridae inducing an acute disease of cloven-hoofed species. Vaccine-induced immune protection correlates with the presence of high levels of neutralizing antibodies but also opsonising antibodies have been proposed as an important mechanism of the immune response contributing to virus clearance by macrophages and leading to the production of type-I interferon (IFN) by plasmacytoid dendritic cells (pDC). The present study demonstrates that the opsonising antibody titres mediating enhanced IFN-α responses in pDC were similar to neutralizing titres, when antigenically related viruses from the same serotype were employed. However, sera cross-reacted also with non-neutralized isolates of multiple serotypes, when tested in this assay. Both uncomplexed virus and immune complexed virus stimulated pDC via Toll-like receptor 7. An additional finding of potential importance for strain-specific differences in virulence and/or immunogenicity was that pDC activation by FMDV strongly differed between viral isolates. Altogether, our results indicate that opsonising antibodies can have a broader reactivity than neutralizing antibodies and may contribute to antiviral responses induced against antigenically distant viruses.


Subject(s)
Antibodies, Viral/metabolism , Dendritic Cells/immunology , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease/immunology , Swine Diseases/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/metabolism , Antibodies, Viral/blood , Dendritic Cells/virology , Enzyme-Linked Immunosorbent Assay/veterinary , Foot-and-Mouth Disease/virology , Foot-and-Mouth Disease Virus/genetics , Interferon Type I/genetics , Interferon Type I/metabolism , Interferon-alpha/biosynthesis , Opsonin Proteins/metabolism , Swine , Swine Diseases/virology , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...