Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(23)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34884531

ABSTRACT

Central nervous system (CNS) lesions are a leading cause of death and disability worldwide. Three-dimensional neural cultures in biomaterials offer more physiologically relevant models for disease studies, toxicity screenings or in vivo transplantations. Herein, we describe the development and use of pullulan/dextran polysaccharide-based scaffolds for 3D neuronal culture. We first assessed scaffolding properties upon variation of the concentration (1%, 1.5%, 3% w/w) of the cross-linking agent, sodium trimetaphosphate (STMP). The lower STMP concentration (1%) allowed us to generate scaffolds with higher porosity (59.9 ± 4.6%), faster degradation rate (5.11 ± 0.14 mg/min) and lower elastic modulus (384 ± 26 Pa) compared with 3% STMP scaffolds (47 ± 2.1%, 1.39 ± 0.03 mg/min, 916 ± 44 Pa, respectively). Using primary cultures of embryonic neurons from PGKCre, Rosa26tdTomato embryos, we observed that in 3D culture, embryonic neurons remained in aggregates within the scaffolds and did not attach, spread or differentiate. To enhance neuronal adhesion and neurite outgrowth, we then functionalized the 1% STMP scaffolds with laminin. We found that treatment of the scaffold with a 100 µg/mL solution of laminin, combined with a subsequent freeze-drying step, created a laminin mesh network that significantly enhanced embryonic neuron adhesion, neurite outgrowth and survival. Such scaffold therefore constitutes a promising neuron-compatible and biodegradable biomaterial.


Subject(s)
Biocompatible Materials/chemistry , Cell Culture Techniques, Three Dimensional/methods , Embryo, Mammalian/cytology , Neurons/cytology , Polysaccharides/chemistry , Tissue Scaffolds/chemistry , Animals , Cell Adhesion , Cell Survival , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Porosity , Tissue Engineering
2.
Int J Mol Sci ; 21(10)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455711

ABSTRACT

Organoids production is a key tool for in vitro studies of physiopathological conditions, drug-induced toxicity assays, and for a potential use in regenerative medicine. Hence, it prompted studies on hepatic organoids and liver regeneration. Numerous attempts to produce hepatic constructs had often limited success due to a lack of viability or functionality. Moreover, most products could not be translated for clinical studies. The aim of this study was to develop functional and viable hepatic constructs using a 3D porous scaffold with an adjustable structure, devoid of any animal component, that could also be used as an in vivo implantable system. We used a combination of pharmaceutical grade pullulan and dextran with different porogen formulations to form crosslinked scaffolds with macroporosity ranging from 30 µm to several hundreds of microns. Polysaccharide scaffolds were easy to prepare and to handle, and allowed confocal observations thanks to their transparency. A simple seeding method allowed a rapid impregnation of the scaffolds with HepG2 cells and a homogeneous cell distribution within the scaffolds. Cells were viable over seven days and form spheroids of various geometries and sizes. Cells in 3D express hepatic markers albumin, HNF4α and CYP3A4, start to polarize and were sensitive to acetaminophen in a concentration-dependant manner. Therefore, this study depicts a proof of concept for organoid production in 3D scaffolds that could be prepared under GMP conditions for reliable drug-induced toxicity studies and for liver tissue engineering.


Subject(s)
Dextrans/chemistry , Glucans/chemistry , Liver/cytology , Stimuli Responsive Polymers/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Cytochrome P-450 CYP3A/metabolism , Hep G2 Cells , Hepatocyte Nuclear Factor 4/metabolism , Humans , Organoids/growth & development , Organoids/metabolism , Porosity
3.
J Mater Sci Mater Med ; 29(6): 77, 2018 May 29.
Article in English | MEDLINE | ID: mdl-29845352

ABSTRACT

Hydrogels are very promising for tissue engineering as they provide scaffolds and a suitable microenvironment to control cell behavior and tissue regeneration. We used a patented method to obtain beads of pullulan/dextran cross-linked with sodium trimetaphosphate (STMP), that were already described for in vivo bone repair. The aim of this study was to provide a comparative analysis of microbeads made of polysaccharides prepared using three different STMP feeding ratio of 1.5, 2.25 or 3 % w/w. The morphology, swelling and biodegradability of these structures were assessed. Mesenchymal stem cells were also seeded to evaluate the cell organization onto the beads. We found that the amount of phosphorus resulting from the cross-linking was proportional to the introduced STMP concentration. An increase of cross-linking decreased the in vitro enzymatic degradability, and also decreased the swelling in PBS or water. The microstructures observed by SEM and confocal microscopy indicated that homogeneous spherical microbeads were obtained, except for the lower cross-linking ratio where the shapes were altered. Beads hydrated in PBS exhibited a mean diameter ranging from 400 to 550 µm with the decrease of STMP ratio. Cells adhered to the surface of microbeads even in the absence of protein coating. Cell viability studies revealed an increase in cell numbers over two weeks for the highest cross-linked beads, whereas the two lowest STMP concentrations induced a decrease of cell viability. Overall, this study demonstrated that pullulan/dextran hydrogels can be designed as microbeads with adjustable physicochemical and biological properties to fulfill requirements for tissue engineering approaches.


Subject(s)
Cross-Linking Reagents/chemistry , Dextrans/chemistry , Glucans/chemistry , Microspheres , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Cell Adhesion , Cell Lineage , Cell Survival/drug effects , Hydrogels/chemistry , Mesenchymal Stem Cells/cytology , Polyphosphates , Polysaccharides/chemistry , Solvents/chemistry , Swine , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...