Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(5 Pt 1): 051703, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11735941

ABSTRACT

Cyanobiphenyls (nCB's) represent a useful and intensively studied class of mesogens. Many of the peculiar properties of nCB's (e.g., the occurrence of the partial bilayer smectic-A(d) phase) are thought to be a manifestation of short-range antiparallel association of neighboring molecules, resulting from strong dipole-dipole interactions between cyano groups. To test and extend existing models of microscopic ordering in nCB's, we carry out large-scale atomistic simulation studies of the microscopic structure and dynamics of the Sm-A(d) phase of 4-octyl-4'-cyanobiphenyl (8CB). We compute a variety of thermodynamic, structural, and dynamical properties for this material, and make a detailed comparison of our results with experimental measurements in order to validate our molecular model. Semiquantitative agreement with experiment is found: the smectic layer spacing and mass density are well reproduced, translational diffusion constants are similar to experiment, but the orientational ordering of alkyl chains is overestimated. This simulation provides a detailed picture of molecular conformation, smectic layer structure, and intermolecular correlations in Sm-A(d) 8CB, and demonstrates that pronounced short-range antiparallel association of molecules arising from dipole-dipole interactions plays a dominant role in determining the molecular-scale structure of 8CB.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(5 Pt 1): 051712, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11735950

ABSTRACT

Infrared dichroism (IR) and atomistic computer simulation are employed to probe molecular shape in smectic liquid crystal phases where the optic axis is tilted relative to the layer normal. Polar plots of absorption profiles due to core (phenyl, C-C) and tail (alkyl or methylene, CH2) vibrations in the tilted synclinic (smectic-C) phase of a variety of materials show the phenyl (core) IR absorbance symmetry axes to be consistently tilted at larger angle from the layer normal than the alkyl or methylene (tail). This suggests that, on average, the tails are less tilted than the cores. Furthermore, we find that optic axis tilt angle is close to the core tilt angle measured by IR dichroism, as expected, since liquid crystal birefringence arises primarily from the cores. These results are in accord with the "zigzag" model of Bartolino, Doucet, and Durand. However, we find that only a small fraction of the tail, the part nearest the core, is tilted, and only this part contributes significantly to layer contraction upon molecular tilt.

SELECTION OF CITATIONS
SEARCH DETAIL
...